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Abstract. Large-ensemble modelling has become an increas-
ingly popular approach to studying the mean climate and the
climate system’s internal variability in response to external
forcing. Here we present the Royal Netherlands Meteorolog-
ical Institute (KNMI) Large Ensemble Time Slice (KNMI–
LENTIS): a new large ensemble produced with the re-tuned
version of the global climate model EC-Earth3. The ensem-
ble consists of two distinct time slices of 10 years each: a
present-day time slice and a + 2 K warmer future time slice
relative to the present day. The initial conditions for the en-
semble members are generated with a combination of micro-
and macro-perturbations. The 10-year length of a single time
slice is assumed to be too short to show a significant forced
climate change signal, and the ensemble size of 1600 years
(160× 10 years) is assumed to be sufficient to sample the
full distribution of climate variability. The time slice ap-
proach makes it possible to study extreme events on sub-
daily timescales as well as events that span multiple years
such as multi-year droughts and preconditioned compound
events. KNMI–LENTIS is therefore uniquely suited to study
internal variability and extreme events both at a given cli-
mate state and resulting from forced changes due to external
radiative forcing. A unique feature of this ensemble is the
high temporal output frequency of the surface water balance
and surface energy balance variables, which are stored in 3-
hourly intervals, allowing for detailed studies into extreme
events. The large ensemble is particularly geared towards re-
search in the land–atmosphere domain. EC-Earth3 has a con-
siderable warm bias in the Southern Ocean and over Antarc-
tica. Hence, users of KNMI–LENTIS are advised to make
in-depth comparisons with observational or reanalysis data,
especially if their studies focus on ocean processes, on lo-
cations in the Southern Hemisphere, or on teleconnections

involving both hemispheres. In this paper, we will give some
examples to demonstrate the added value of KNMI–LENTIS
for extreme- and compound-event research and for climate-
impact modelling.

1 Introduction

Climate change is a topic of high societal interest due to
its influence on weather (impacts) around the world. Fur-
ther scientific understanding of the changing nature of the
relationship between weather and society is required to de-
sign adequate local adaptation and mitigation strategies. Not
only the climatic mean, but also the variability around the
mean is subject to change. Recent studies have shown that
long-term trends in climate variability can differ substantially
from trends in mean climate (Brown et al., 2017; Pendergrass
et al., 2017; Bintanja et al., 2020; van der Wiel and Bin-
tanja, 2021) because physical processes that govern changes
in variability can differ from those that affect changes in the
mean state. The effects on climate extremes can even be of
the opposite sign (Schaeffer et al., 2005; van der Wiel and
Bintanja, 2021), depending on for example the climate vari-
able and the region. Climate models are important tools to ex-
amine the Earth system’s response to greenhouse gas forcing
and associated uncertainties. Model simulations extend and
complement the comparatively short observational records.
Further, simulations allow for experiments to test the impacts
of specific climate feedback mechanisms, which would not
be possible in the real world.

Single-model initial-condition large-ensemble (SMILE)
climate model simulations are uniquely suited for the study
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of uncertainties in (changing) climate variability and of cli-
mate extremes (Deser et al., 2020a; Maher et al., 2021; Wood
et al., 2021). SMILEs consist of many repetitions of the same
climate modelling experiment that only differ in their ini-
tial conditions. The different initial conditions lead to diver-
gence due to the chaotic nature of the climate system, i.e. un-
predictable internal variability. This results in various model
realizations within the internal variability of a certain aver-
age climate state. The use of SMILEs has become increas-
ingly popular in climate science and very recently has also
started to find its way into other related geosciences (e.g.
in hydrology; van der Wiel et al., 2019c; Champagne et al.,
2020; Poschlod et al., 2020). Typically, large-ensemble sim-
ulations are set up following transient climate forcing scenar-
ios, e.g. those designed for the Coupled Model Intercompar-
ison Project (CMIP). The choices for the emission scenario,
simulation length, horizontal and vertical model resolution,
and number of ensemble members (e.g. Milinski et al., 2020)
are often an optimization between the available computa-
tional resources and the need or wish for more detailed sim-
ulations. Various climate modelling centres have produced
large ensembles and have made efforts to make them openly
available for research. Examples are the seven CMIP5-class
transient ensembles collated in a centralized archive (MM-
LEA; Deser et al., 2020a), general circulation model (GCM)
ensemble experiments based on the CMIP protocol (e.g. Kay
et al., 2015; Kirchmeier-Young et al., 2017; Maher et al.,
2019; Deser et al., 2020b; Rodgers et al., 2021; Wyser et al.,
2021), and ensembles of regional climate model runs (e.g.
Lenderink et al., 2014; Massey et al., 2015; Leduc et al.,
2019).

In this paper we present and describe a recently produced
large ensemble following a time slice protocol: the Royal
Netherlands Meteorological Institute (KNMI) Large Ensem-
ble Time Slice (KNMI–LENTIS). The time slice protocol is
different from the transient ensemble simulations mentioned
above. We ran many simulations of a decade in length for a
climate state of interest rather than a number of multi-decadal
or multi-centennial transient simulations. KNMI–LENTIS
consists of two time slices: a present-day period and a fu-
ture period 2 K warmer than the present day. Each time slice
has 160 members of 10 simulation years each.

We made the following assumptions in the design of the
ensemble, which we test in Sect. 3: the 10-year segments
are assumed to be too short to show a significant forced cli-
mate change signal, data spanning 1600 years are sufficient
to sample the full distribution of climate variability, and dif-
ferences between the two time slices can be attributed to
forced climate change. With these assumptions, a single time
slice can be used to investigate internal climate variability of
a certain climate state, whereas the two time slices together
can be applied to study differences in the mean state and the
differences in variability between the two climate states.

The KNMI–LENTIS design protocol is inspired by a pre-
vious time slice large ensemble produced at KNMI (van der

Wiel et al., 2019c) though improved based on earlier experi-
ence by the following: longer simulation length (10 years vs.
5 years), higher temporal resolution (sub-daily vs. daily out-
put of surface hydrology and surface energy variables), and
improved method of micro-perturbations (perturbed initial
conditions vs. stochastically perturbed parameterization ten-
dencies) using the latest release of EC-Earth (CMIP6 genera-
tion vs. CMIP5) with higher resolution and improved physics
in many aspects (Döscher et al., 2022). The previous large
ensemble has been widely used, for example contributing
to analyses of climate variability and forced trends therein
(Blackport et al., 2019; van der Wiel and Bintanja, 2021;
Sperna Weiland et al., 2021), analyses of changing climate
extremes (Bonekamp et al., 2021; Nanditha et al., 2020), and
climate attribution research (e.g. Philip et al., 2019, 2020;
Kew et al., 2021). Derived simulations, in which the ensem-
ble was used to drive models from other geosciences disci-
plines, e.g. hydrological modelling (e.g. van der Wiel et al.,
2019c; van Kempen et al., 2021), vegetation modelling (e.g.
Tschumi et al., 2021, 2022), crop modelling (e.g. Vogel et al.,
2021; Goulart et al., 2021; Zhang et al., 2022), or energy
modelling (e.g. van der Wiel et al., 2019a, b), were used to
assess the influence of (changing) climate variability on var-
ious natural and societal systems. Finally, the large ensem-
ble was used to develop and test scientific methods (e.g. van
Kempen et al., 2021; van der Wiel et al., 2021; Boulaguiem
et al., 2022).

The way the ensemble is set up and generated is described
in Sect. 2. In Sect. 3 we provide a description of the data and
discuss the advantages and limitations of the underlying as-
sumptions. In addition, we show examples of possible anal-
yses using time slice large ensembles, including their value
for compound-event research as well as for climate-impact
modelling (Sect. 4). Finally a short conclusion is provided
(Sect. 5).

2 Setup

KNMI–LENTIS consists of two time slices, each with 160
simulations of 10-year length. The time slices represent the
present-day climate (2000–2009) and a +2 K warmer future
climate (2075–2084 in Shared Socioeconomic Pathway 2-
4.5 (SSP2-4.5) in EC-Earth3) (Fig. 1a). Each time slice thus
consists of 1600 years of model data. In this section we de-
scribe the climate model, we elaborate on the choice of the
periods and their forcing scenario, and we describe the ini-
tial conditions of the individual simulations and how they
have been generated. All simulations have a unique ensem-
ble member label that reflects the forcing, the parent, and
the seed. Further, all simulations are labelled per the CMIP6
CMOR convention of variant labelling. In Appendix A, both
the ensemble member label and the CMIP6 variant label of
KNMI–LENTIS simulations are explained. The initial con-
ditions (ICs) of the ensemble members can be characterized
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by two aspects: the parent simulation from which each mem-
ber is branched off (macro-perturbation) and the seed number
which relates to a particular micro-perturbation in the initial
three-dimensional atmosphere temperature field.

2.1 Model description

KNMI–LENTIS is generated with the model EC-Earth3.
EC-Earth3 is a fully coupled, state-of-the-art global cli-
mate model that is maintained by a consortium of Euro-
pean weather and climate centres (Döscher et al., 2022). The
model runs at an 80 km nominal resolution and has prog-
nostic component models for atmosphere, ocean, sea ice,
and land hydrology processes. The atmosphere is simulated
with ECMWF’s Integrated Forecasting System (IFS) cy36r4.
The horizontal resolution is the TL255 spherical harmon-
ics field, which is linearly reduced in the post-processing
stage to a Gaussian grid equivalent of 512× 256 grid cells in
longitude–latitude. The vertical resolution is 91 levels with
the top level at 0.01 hPa. The ocean model NEMO3.6 uses a
tripolar grid ORCA1 which primarily has 1◦ horizontal reso-
lution with meridional refinement down to 1/3◦ in the trop-
ics. The grid dimensions are 362× 292 longitude–latitude in
the horizontal and 75 levels in the vertical with the top grid
cell in the 0–1 m layer. The sea ice model is LIM3, which
shares the ORCA1 grid. The internal time step for both atmo-
sphere and ocean is 45 min. The coupling frequency between
atmosphere and ocean is equal to the internal time step. Fur-
ther details on the EC-Earth3 model are provided in Döscher
et al. (2022).

The land surface model of EC-Earth is H-TESSEL: the
Tiled ECMWF Scheme for Surface Exchanges over Land,
with revised land surface hydrology (van den Hurk et al.,
2000; Balsamo et al., 2009; Dutra et al., 2010). H-TESSEL
computes the land surface water and energy balance at the
interface of the soil and the atmospheric boundary layer. The
model uses a tiling approach to calculate the surface energy
fluxes, the skin temperature, and soil parameters. It divides
each grid box into homogeneous fractions (tiles) represen-
tative of vegetated, bare soil, frozen water, and liquid water
surfaces. The grid box fluxes and skin temperature values are
generated as weighted averages of the tiles. Soil properties
and parameterizations are not tile-specific, but instead they
apply to the entire grid cell such that H-TESSEL simulates
soil moisture per grid cell.

The EC-Earth3 version that is used for the simulations
of KNMI–LENTIS is the knmi23-dutch-climate-scenarios
project branch (physics index p5), from now on referred to as
“ECE3p5”. The ECE3p5 version is a re-tuned version of the
EC-Earth 3.3 release for CMIP6 (Döscher et al., 2022). EC-
Earth 3.3 has a warm bias in the Southern Ocean and a cold
bias in the Northern Hemisphere. The KNMI re-tuning ef-
fort focused on reducing the Northern Hemisphere cold bias.
This has been successful with the trade-off of increasing the
Southern Ocean warm bias and therefore introducing a posi-

tive global mean surface temperature (GMST) bias (see also
Sect. 3.2). As the main research aims of KNMI–LENTIS are
oriented towards the Europe region, we have accepted this
trade-off.

The re-tuning used a subset of the atmospheric cloud tun-
ing parameters that were selected in earlier work of atmo-
spheric tuning of EC-Earth3 (see Sect. 2.2.1 in Döscher et al.,
2022, for further details). Two tuning parameter values have
been changed in the ECE3p5 version compared to the EC-
Earth 3.3.3.2 release: RVICE (fall speed of ice particles) and
RLCRITSNOW (critical autoconversion threshold for snow
in large-scale precipitation). RVICE is set to 0.1328 in the
re-tuning (0.137 in EC-Earth 3.3.; 0.15 in IFS cy36r4), and
RLCRITSNOW is 4.6× 10−5 (4.0× 10−5 in EC-Earth 3.3.;
5.0× 10−5 in IFS cy36r4). The other tuning parameters re-
main the same as in Table 6 of Döscher et al. (2022).

Spinning up the model was done in parallel with the re-
tuning process. The spin-up runs of the differently tuned
models have been combined because the slow ocean spin-
up is believed to benefit from running more years with a set
of parameter values that is very close. The initialization of
the ECE3p5 version pre-industrial (PI) run was done with
the restart files of the year 2750 from the EC-Earth3 physics
index p2 PI run. The ECE3p5 version PI ran from model year
2750 to 4585. The 16 historical simulations are branched
with intervals of 25 years in the initial conditions, starting
with member 1 in year model 4550 and then going back-
wards with member 2 in 4525, member 3 in 4500, . . . , mem-
ber 16 in 4175. This means for the member with the shortest
spin-up time with the ECE3p5 version, this is 4550−2750=
1800 years. Additional spin-up has taken place prior to this,
albeit via runs with slightly different tuning parameter sets
p2 and p1. All added together, the trajectory of the ECE3p5
version spin-up covers about 6000 years. With this version of
EC-Earth, the KNMI has produced an ensemble of 16 tran-
sient simulations with CMIP6 forcing for 1850–2100 (histor-
ical, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5).

The Swedish Meteorological and Hydrological Institute
(SMHI) has generated a large ensemble (SMHI-LENS) with
EC-Earth3 version 3.3.1 (“ECEp1” for short) (Wyser et al.,
2021). This large ensemble is a transient ensemble of 50
members for the period 1970 to 2100 (historical, SSP1-
2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). The model version of
SMHI-LENS is the CMIP6 release version of EC-Earth3: it
was tuned, among other things, to have the smallest possi-
ble GMST bias with respect to reanalyses and observational
records. The ECE3p5 version on the other hand was tuned to
have the smallest possible Northern Hemisphere mean sur-
face temperature (MST) bias. Therefore, the difference be-
tween SMHI-LENS on the one hand and KNMI–LENTIS
and the KNMI transient simulations on the other hand is that
the model versions have a different equilibrium climate: this
affects the climate in the pre-industrial, historical, and SSP
simulations (Meehl et al., 2020). The transient climate re-
sponse (TCR) is 2.1 for ECE3p5 (2.3 for ECEp1 and 2.0
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for CMIP6 multimodel mean). The model’s effective climate
sensitivity (ECS) is 4.0 for ECE3p5 (4.3 for ECEp1 and
3.7 for CMIP6 multimodel mean). Other than that, there are
very few differences between the models: the model version
used for KNMI–LENTIS (the atmosphere and ocean dynam-
ical core, the land and sea ice models) is the same as EC-
Earth 3.3.1, which is used for SMHI-LENS. For the over-
lapping years and scenario forcing, KNMI–LENTIS can be
compared to SMHI-LENS like any two other large ensembles
with common ancestry; see Knutti et al. (2013) for examples.

2.2 Time slice choices: period and forcing scenario

The design of the ensemble required four choices. Two
choices in the ensemble design were made a priori: the
simulation length and the climatic states of interest. The
length of each time slice was chosen as 10 years. Limit-
ing the simulations to 10 years avoids having any apprecia-
ble trend. This approach allows for studying extreme events
on subannual timescales as well as events that span multi-
ple years (e.g. multi-year droughts and preconditioned com-
pound events as in Pascale et al., 2021, and van der Wiel
et al., 2022). The climatic states of interest are the present
day (named “PD”) and a future world that is +2 K warmer
than the present day in the annual GMST (named “2 K”).

The other two choices were (1) which years would rep-
resent the PD and 2 K periods and (2) which SSP scenario
we would use to force the 2 K period. The criterion to make
this decision was based on the decadal climate change trend.
To be able to analyse forced changes in climate variability
between PD and 2 K, it is important that the forced signal
within a time slice is as small as possible. This way we can
accept each individual year as a suitable representative of the
respective climatic state. Given that the decadal trend cannot
be zero because there is a (observed) climate change signal
in the present day, we aim to choose a +2 K period that has
a similar decadal climate change trend to PD. Choosing the
years to represent the PD and 2 K periods was further limited
by the availability of initial-condition files: they are available
every 10 years. In the historical period that is in 1990, 2000,
and 2010, and for the scenario-forced period that is 2015,
2025, 2035, etc. Finally, from a technical point of view, we
decided not to allow mixed forcing within a period (i.e. com-
bining historical and SSP forcing). This prohibits the PD pe-
riod from being defined beyond 2014, as CMIP6 historical
forcing covers the years 1850–2014.

We have taken the years 1985–2014 from the 16 transient
historical simulations with the ECE3p5 version (described in
Sect. 2.1) to calculate the present-day GMST. This period is
exclusively forced by historical forcing, meaning we avoid
blending in an SSP scenario after 2014 and push our analy-
sis in a particular direction. The mean 1985–2014 GMST of
the 16 members is µ= 15.47 ◦C, with an ensemble standard
deviation of σ = 0.15 ◦C.

Next, we consider the future SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5 scenario simulations, which each have
16 members. We calculate in what year the annual mean
GMST reaches 15.47+ 2.00 ◦C in the scenario simulations,
and we calculated the 10-year GMST changes around this
year. We find that the SSP1-2.6 scenario does not reach this
target value before 2100. Between the SSP2-4.5, SSP3-7.0,
and SSP5-8.5 scenarios, the SSP2-4.5 scenario shows the
smallest forced signal in the 10-year period around the target
GMST value; therefore we chose to initialize the 2 K time
slice from the SSP2-4.5 scenario.

Because the forced signal is comparatively small, the
SSP2-4.5 scenario shows a larger spread in the timing of
reaching the warming target (σ = 9.5 years). The 16-member
ensemble-mean simulated year when the forced signal leads
to a mean state of 15.47+ 2.00 ◦C is year 2073. Given the
constraints on the availability of initial conditions and given
the large spread in timing when SSP2-4.5 reached our de-
sired GMST increase, our best estimates of years to repre-
sent the PD and 2 K climates are the years 2000–2009 sim-
ulated using historical forcing and the years 2075–2084 of
the SSP2-4.5 scenario. Figure 1a shows the timing of the
two time slices in the 16 transient simulations: the PD time
slice is marked by the left pink band and the 2 K time slice is
marked by the right pink band.

2.3 Initial conditions

There are several ways to generate multiple unique ensem-
ble members. These include applying micro- and macro-
perturbations to the initial conditions (Deser et al., 2020a).
A micro-perturbation refers to adding a round-off error size
perturbation to an input field of the GCM, which generally is
the three-dimensional atmosphere temperature field. The per-
turbation propagates due to the chaotic behaviour of the at-
mosphere model. As such this method produces a unique en-
semble member for each unique micro-perturbation. Macro-
perturbations refer to initial conditions that are more fun-
damentally different among each other. Usually such initial
conditions are acquired by branching from a different point
in the parent run (such as the initialization of the historical
simulations described in Sect. 2.1). This way, the initial state
is different not only in the atmosphere but also in all model
components. Another method to create different members is
to make use of uncertainty in parameter space, for exam-
ple using stochastically perturbed parameterization tenden-
cies (SPPT, as used in the operational ECMWF forecast en-
semble – Ollinaho et al., 2017; Lock et al., 2019 – and in the
previous KNMI time slice ensemble by van der Wiel et al.,
2019c).

For KNMI–LENTIS we use a combination of micro- and
macro-perturbed initial conditions. We realize this may im-
pact the ensemble variability of for example the first year;
this is investigated in Sect. 3.5. The parents from which the
simulations are branched can be considered macro-perturbed
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initial conditions, given that all parents are rooted in the
same PI spin-up. The parents are 16 full transient historical
and SSP2-4.5 simulations made using the ECE3p5 version.
The 16 historical simulations start in 1850, branched off the
PI spin-up simulation. The 16 SSP2-4.5 simulations start in
2015, from the end of their respective historical simulation
in 2014 (Fig. 1a).

Micro-perturbations are applied to the initial three-
dimensional temperature field of the atmosphere as in
Haarsma et al. (2020). Each value in the input field is mul-
tiplied by a number from a random uniform distribution of
values between−5×10−5 and+5×10−5 K to yield the per-
turbed field. We have created nine different random distribu-
tions, using a seed from 1 to 9 to assure reproducibility. For
one parent, this yields nine sets of micro-perturbed ICs. In-
cluding the original set, this is 10 sets of ICs in total, for 10
members (visualized in Fig. 1b). Figure 1c visualizes the full
ensemble setup with all members: 10 micro-perturbations for
16 historical and scenario macro-perturbations; each simula-
tion is run for 10 years.

3 Limitations

In this section, we evaluate and discuss several aspects of
the ensemble that are important for users to consider. We
quantify the ensemble temperature difference between the
present-day time slice and the +2 K time slice for different
seasons and for several subsections of the world. We discuss
the magnitude of the near-surface temperature biases in the
model by making a comparison with ERA5 reanalysis data
(Hersbach et al., 2020). Further, we discuss the validity of
two critical assumptions:

1. Within a time slice, the 10-year segments are too short
to show a significant forced climate change signal.

2. The ensemble size, 1600 years for both time slices, is
sufficient to sample the full distribution of climate vari-
ability.

If true, this means that a single time slice can be used to in-
vestigate internal or natural climate variability at a given cli-
matic state and that any differences between the two time
slices can be attributed to forced climate change. Finally, we
comment on the micro- and macro-initialization method and
the legacy effect of a common parent on variability.

3.1 Temperature difference between the time slices

The 2 K time slice is designed to be 2 K warmer than the
GMST of the present-day time slice, as detailed in Sect. 2.2.
Here we quantify the ensemble spread of the surface tem-
perature difference (1T2 m) between the two time slices. The
annual global mean 1T2 m is close to the GMST+2 K tar-
get: 1.95 K on average (Table 1). The spread in GMST is
shown in Fig. 3a and c. Given that global climate change has

Table 1. Temperature difference between the time slices. Ensemble
mean of the near-surface air temperature difference (K) between the
2 K time slice and the PD time slice. The regions used to compute
Europe, North America, and South and Southeast Asia means are
shown in Fig. 2.

ANN DJF MAM JJA SON

Global 1.95 2.02 1.83 1.90 2.06
N Hemisphere 2.52 2.67 2.29 2.42 2.72
Europe 2.55 2.40 2.29 2.81 2.69
N America 2.46 2.63 2.18 2.50 2.53
S & SE Asia 1.94 2.00 1.95 1.91 1.90

specific local and regional imprints, the temperature differ-
ence is dependent on season and region. The 2 K time slice
shows enhanced warming in the Northern Hemisphere, Eu-
rope, and North America. The South and Southeast Asia re-
gion is closer to the global value (Table 1).

3.2 Quantification of model bias

The re-tuned EC-Earth3 ECE3p5 version has a known warm
bias in the Southern Hemisphere (Sect. 2.1). In this section
we quantify the magnitude of this bias and evaluate its spa-
tial and temporal properties. The near-surface temperature of
the present-day time slice of the ensemble is compared to
ERA5 (Hersbach et al., 2020). We have chosen the World
Meteorological Organization (WMO)-defined Climatologi-
cal Standard Normals reference period 1991–2020 to have
sufficient present-day climate variability to compare with.
The ERA5 data are re-gridded to the coarser EC-Earth grid
using nearest-neighbour interpolation.

The global annual mean surface temperature bias in the
PD time slice of KNMI–LENTIS with respect to ERA5 is
1.30 K (Table 2). This is largely due to a strong warm bias
in the Southern Ocean and over Antarctica (Fig. 2a). The
temperature bias over land is generally smaller in magnitude
and more often insignificant compared to the ocean bias. The
near-surface temperatures in the North Atlantic Gyre and the
North Pacific Gyre are significantly underestimated.

The integrated annual mean temperature bias of the North-
ern Hemisphere is 0.23 K, which is much smaller than the
global bias (Table 2). Further, we see a stronger seasonal ex-
pression of the bias in the Northern Hemisphere, with a larger
bias in the summer and autumn and a smaller bias in win-
ter and spring. There are regional differences, with generally
cold bias in mountainous regions with steep orography. In all
cases in the Northern Hemisphere, the bias is much smaller
than the global bias. See Fig. 2b–d and Table 2 for specifi-
cations for the regions of Europe, North America, and South
and Southeast Asia.

This outcome is in line with the expectations of using the
re-tuned ECE3p5 version, of which the global warm bias is
larger than that of the EC-Earth3 version in Döscher et al.
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Figure 1. Overview of KNMI–LENTIS setup. (a) Global mean surface temperature (GMST) of the 16 ECE3p5 ensemble members forced
with CMIP6 historical and SSP2-4.5 forcing. Pink shading shows the two time slices in KNMI–LENTIS. (b) Part of the time slice setup.
From each of the 16 parent runs (grey), 10 KNMI–LENTIS simulations (pink) are branched using unique seeds to make a micro-perturbation
in the atmospheric initial conditions. (c) The full ensemble consists of two time slices of 10 years with 1600 years of data each: the present
day (PD) and present day +2 K global warming (2 K). The parents are visualized by the grey (historical) and blue (SSP2-4.5) lines. The
KNMI–LENTIS simulations are visualized by the pink lines.

Table 2. Quantification of model bias w.r.t. ERA5 1991–2020.
Ensemble mean of the near-surface air temperature bias (K) of
the KNMI–LENTIS present-day 2000–2009 time slice w.r.t. ERA5
1991–2020. The regions for Europe, North America, and South and
Southeast Asia are shown in Fig. 2.

ANN DJF MAM JJA SON

Global 1.30 1.22 1.20 1.43 1.33
N Hemisphere 0.23 0.18 −0.28 0.41 0.60
Europe 0.35 −0.14 −0.06 0.87 0.71
N America 0.38 −0.26 −0.25 0.46 1.04
S & SE Asia −0.10 −0.26 −0.35 0.15 0.06

(2022) but much improved for the Northern Hemisphere. Fu-
ture users of KNMI–LENTIS are advised to make in-depth
comparisons with observational or reanalysis data, especially
if their study focuses on ocean processes, on locations in the
Southern Hemisphere, or on teleconnections involving both
hemispheres.

3.3 Forced climate signal within a time slice

To quantify the size of the forced climate change signal
relative to the interannual variability within the time slices
(assumption 1), we investigate the linear trend of GMST
(Fig. 3a, c). Both time slices have an interannual ensem-
ble standard deviation of 0.17 K for the annual mean GMST
value on average for the 10 time slice years. The linear trend
over the 10-year simulation period is only slightly larger than
this, at 0.20 K per 10 years for the PD ensemble and 0.22 K
per 10 years in the 2 K ensemble (black error bars in Fig. 3a,
c), approximately 1.25 times larger than the interannual en-
semble standard deviation. At the global scale, we therefore
conclude this assumption holds. Locally, or for other vari-
ables, forced trends may exceed the respective trends.

In Fig. 3b and d we show the ratio of the 10-year linear
trend of near-surface temperature (TAS) and the ensemble
standard deviation at the grid point level. Low values of this
quantity are preferred. In most parts of the world, the value
is smaller than 1, indicating a smaller forced trend than en-
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Figure 2. Model bias. Near-surface air temperature bias (K) for the annual-average ensemble mean of the KNMI–LENTIS present-day time
slice [160× (2000–2009)] compared to ERA5 (1991–2020), for the (a) global, (b) Europe, (c) North America, and (d) South and Southeast
Asia regions. In panels (b)–(d) grid cells with a non-significant difference are dotted (p < 0.01).

semble internal variability. We acknowledge that interannual
variability is different for different variables. We therefore
advise future users of KNMI–LENTIS to check the validity
of assumption 1 on a case-by-case basis.

3.4 Range of sampled internal variability

To test whether or not the full distribution of climate vari-
ability has been sampled in a 1600-year time slice (assump-
tion 2), we investigate daily temperature variability at a sin-
gle grid point (52.3◦ N, 4.9◦ E; nearest point to De Bilt, the
Netherlands). We cannot test how different the distribution
would be in a second set of 1600 years. Therefore we inves-
tigate differences between two halves of the PD ensemble,
each of 800 simulation years. The shape of the distribution
in Fig. 4a shows two peaks, which is a known phenomenon
in the Netherlands due to the fairly rapid transition between
the summer and winter season. The distributions of all daily
temperature values in the two smaller ensembles are indis-
tinguishable from each other, suggesting that variability has
been adequately sampled in these half ensembles (see solid
blue line and dotted green line in Fig. 4a and b). Sampling
adequately in the tail of the distribution, e.g. for the warmest
day of the year, requires larger sampling sizes. However, also
here the two halves of the PD ensemble are statistically sim-
ilar (Fig. 4b, differences between the generalized extreme
value (GEV)-fitted distributions are well within the associ-
ated error bars). Comparing the PD distributions to the dis-
tribution of the 2 K ensemble, we note that forced climate
change significantly impacts the shape of the distribution.
We also note that variability beyond the scope of the climate
model (e.g. at scales smaller or larger than resolved, missing
processes) is not captured by these ensembles.

3.5 Legacy of micro-perturbations in simulated
variability

The way that the members of an ensemble are initialized im-
pacts the climate variability of that ensemble in the initial
stages. Specifically, when multiple initialization methods are
combined, like the micro- and macro-perturbed initial con-
ditions in the case of KNMI–LENTIS, there can be a too
large degree of similarity at the beginning between similarly
initialized members. Therefore, we need to assess the differ-
ences in variability between and among members of a com-
mon macro-perturbation (parent) at the beginning of the sim-
ulations and assess the time it takes to converge to a similar
level of variability.

In KNMI–LENTIS, the initial conditions from a common
parent of the ocean state are completely the same; only in
the atmosphere state are there small differences due to the
micro-perturbation. The legacy of information from the ini-
tial conditions has consequences for the estimated variability.
This may show a spurious peak at this (early) year-1 value.
The effect of the shared parent on variability differs per loca-
tion and variable. We test this with a subset of parents for lo-
cal near-surface temperature (TAS) variability in De Bilt, the
Netherlands, and for El Niño–Southern Oscillation (ENSO)
variability. The TAS variability in De Bilt seems to have lost
the initial-condition information after around 20 simulation
days (Fig. 5). For the ENSO signal it takes 2 or 3 years to
lose the initial-condition information (Fig. 6).

An important goal of large-ensemble modelling is to be
able to separate the part of the model outcome that can
be attributed to a forced signal (climate change) from the
part that comes from internal variability (climate variabil-
ity). With this knowledge, we can reduce uncertainty in cli-
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Figure 3. Quantification of assumption 1: size of forced trends within a time slice. (a, c) Ensemble spread of annual mean values of global
mean surface temperature (GMST, shaded colours, percentile values denoted on the left). Ensemble interannual standard deviation and
ensemble linear trend of GMST over 10 years shown in bottom-right corner, including the 80 % spread of this value for individual members.
The black bar in the centre shows the size of this linear trend relative to the ensemble spread. (b, d) Global map of the ratio between the
ensemble linear trend in near-surface temperature and the ensemble standard deviation in near-surface temperature. (a, b) The PD time slice.
(c, d) The 2 K time slice.

Figure 4. Quantification of assumption 2: sampling internal variability within a time slice. (a) Distribution of daily 2 m temperature (TAS)
data at 52.3◦ N, 4.9◦ E, in two halves of the PD ensemble (blue and green shading and lines, each based on 800 years) and 2 K ensemble
(dotted red line, based on 1600 years). (b) GEV fit distribution (lines) and modelled data (dots) value plot for the warmest day of the year,
using the same colours as in (a).

mate projections. There is a part of uncertainty that cannot
be reduced, which is due to the chaotic nature of the cli-
mate system (i.e. irreducible uncertainty; see Hawkins et al.,
2016; Marotzke, 2019; Singh et al., 2023). This can be sam-
pled with the micro-perturbations. For the members of dif-
ferent macro-perturbations, the signal of common ancestry
has to dissipate first. The above examples show how quickly
the chaotic nature of the Earth system model takes over the
initial-condition micro-perturbation. However, the speed of
dispersion varies spatially and is variable dependent. We
therefore advise future users to quantify this effect for their
variables of interest and if necessary remove the first days/-
months/year of each simulation to ensure that estimates of
variability do not suffer from this effect.

4 Demonstration

In this section, we demonstrate the ensemble by giving ex-
amples of interesting cases. This ensemble has the unique
feature of high-frequency output, allowing for detailed stud-
ies into extreme events. The surface water balance and sur-
face energy balance variables are stored at 3-hourly inter-
vals. Atmospheric variables (relative humidity, specific hu-
midity, temperature, eastward wind, northward wind, omega)
are saved daily on eight pressure levels (1000, 850, 700, 500,
250, 100, 50, 10 hPa). Additionally, a number of land, ocean,
and atmosphere variables are stored monthly. The variables
are post-processed and standardized to the CMIP6 conven-
tion. A full overview of the output variables can be found in
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Figure 5. Test of influence of parent on variability: local TAS. (a) Time series, coloured by parent, of TAS at a grid point (52.3◦ N, 4.1◦ E)
for the first 31 d of the simulations. (b) Time series of variability (estimated as the standard deviation of TAS of all members with a certain
parent, then averaged over the parents) for different years in the time slice.

Figure 6. Test of influence of parent on variability: Niño 3.4. (a) Distribution of the annual mean Niño 3.4 index, separated by parent and
simulation year. (b) Time series of variability (estimated as the standard deviation of Niño 3.4 of all members with a certain parent, then
averaged over the parents) throughout the time slice.

the Supplement. More information on the variables and their
output dimensions is accessible via the following search tool:
https://clipc-services.ceda.ac.uk/dreq/mipVars.html (last ac-
cess: 19 September 2022).

4.1 Climatological context of observed extreme events

Weather extremes usually take place at a point in time. This
often raises questions about the climatological context of
such an event and about the climate change aspects of similar
events. KNMI–LENTIS can be used to determine, for exam-
ple, the return interval of specific types of events. With this
information we can infer the range of frequency and magni-
tude that can occur within the climate’s variability and what
the influence of climate change is on this (van Oldenborgh
et al., 2021; van der Wiel et al., 2021).

The effect of the forced climate difference can be
seen in other variables throughout the Earth system,
since EC-Earth is a fully coupled climate model. Fig-
ure 7a–c highlight some extreme weather/climate events
that have occurred in the recent past. The Greenland Ice
Sheet (GrIS) has seen unprecedented melt events in re-
cent years (e.g. http://nsidc.org/greenland-today/2021/08/
large-melt-event-changes-the-story-of-2021/, last access:
3 October 2022). Figure 7a shows the simulated return in-

tervals of July average snowmelt rates for a grid point in the
eastern part of the Greenland Ice Sheet (72◦ N, 30◦W). The
higher return intervals in the 2 K time slice are due to a pro-
jected increase in future July melt event frequency.

The English Southern railway organization introduced
speed restrictions during the 2022 heat wave in response to
drying and shrinking of the clay soils, which made the train
tracks prone to movement (e.g. https://www.networkrail.co.
uk/stories/soil-moisture-deficit-on-the-railway/, last access:
3 October 2022). Figure 7b shows simulated surface air
temperatures in July for a grid point in southern England
(51◦ N, 2◦W) against column-integrated soil moisture con-
tent for the PD and 2 K time slices. The upward–leftward
shift of the scatter cloud indicates more co-occurrences of
hot temperature–soil moisture deficit events in the warmer
climate.

Finally, the World Meteorological Organization fore-
sees “a strong chance of drier than average conditions in
most parts of the Horn of Africa, making this the fifth
consecutive failed rainy season” for the October–December
2022 season (e.g. https://www.africanews.com/2022/08/26/
horn-of-africa-5th-consecutive-rainy-season-missed/, last
access: 3 October 2022). Figure 7c shows the simulated
seasonal cycle of precipitation at a grid point in the Horn
of Africa (8◦ N, 48◦ E). In contrast to the news item, the
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simulated warmer climate appears to become generally wet-
ter, with shifts in the start and intensity of the rain season.
However, further analysis is required to draw conclusions on
the occurrence of droughts.

4.2 Added value for extreme-meteorological-event
research

Grey and blacks swans are terms for the types of extreme
events that are as yet unobserved or cannot even have been
anticipated, respectively (Watkins, 2013; Aven and Renn,
2015). These types of events by definition have no evidence
in historical observations. Robust statistical analyses are of-
ten not possible due to their sparsity, not even with large-
ensemble data. A recently developed technique into swan-
type events is using storylines (Shepherd et al., 2018; Lloyd
and Shepherd, 2021; Sillmann et al., 2021). By composing
a storyline, the extreme event can be understood in terms of
its spatial and temporal meteorological context. This can also
help to gain understanding of such events in a different cli-
mate. KNMI–LENTIS provides a physically coherent set of
simulations that allows for a storyline type of research into
possible extreme meteorological events in the present day
and in a 2 K warmer climate (van der Wiel et al., 2021).

In this example we identify the hottest day in De Bilt
(52.3◦ N, 4.9◦ E), the Netherlands, in the PD time slice
and its meteorological circumstances. The daily maximum
near-surface air temperature reaches 39 ◦C on this day. The
hottest day to date in the observed records at the KNMI
was measured on 25 July 2019, with a peak temperature
of 37.5 ◦C (https://www.knmi.nl/over-het-knmi/nieuws/
warmste-dag-van-het-jaar-nu-4-c-warmer-dan-rond-1900,
last access: 4 October 2022), demonstrating that the ensem-
ble can indeed be used to study events beyond the observed
record. Figure 8a shows very high maximum temperatures
in a large area of western and central Europe and across
the Mediterranean. The physical drivers of such an extreme
event can be both large-scale warm air advection and
local land–atmosphere processes. The evolution of surface
energy balance components in De Bilt (Fig. 8b) does not
suggest that local land–atmosphere processes are a main
contributor to this heat event. The sea level pressure field
over the Northern Hemisphere points to advection of hot
air from the south (Fig. 8c). A small low-pressure system
west of the British Isles seems important in directing the
flow northwards. We note that temperatures in northern
America are anomalously high as well (not shown). Further
analysis is needed to assess whether the extremely hot
weather is related to the specific configuration of high-
and low-pressure systems that is seen in earlier studies in
connection with simultaneously occurring heat waves in the
Northern Hemisphere (Kornhuber et al., 2019).

4.3 Added value for compound-event research

The multivariate nature of compound events, events where
combinations of climate drivers and/or hazards contribute to
societal or environmental risk (Zscheischler et al., 2018), re-
quires a bottom-up approach in which all data are physically
consistent. Output from climate models is by definition phys-
ically consistent, though when bias corrections or statistical
extrapolations are applied, this consistency may be broken
(i.e. broken consistency between variables or lost consistency
in time due to, for example, a water budget that is no longer
closed). Time slice large ensembles are very suitable for the
analysis of rare or extreme compound events (e.g. Kelder
et al., 2022) owing to the physical consistency of the data
and the explicitly resolved extreme events due to the size of
the ensemble. In this section we demonstrate this using a case
study on extreme wheat yield loss in France.

The 2016 winter-wheat harvest in France was exception-
ally low (28 % lower than the expected value), and Ben-Ari
et al. (2018) showed that this was caused by the “compound
interaction between temperature in the late autumn/early
winter and precipitation in the spring”. The year 2016 was
unique in its combination of low exposure to cold days in
autumn (“vernalizing days”, days with maximum tempera-
tures between 0 and 10 ◦C) followed by wet spring condi-
tions (high precipitation). The historic record, here shown
through ERA5 reanalysis data (Hersbach et al., 2020; Bell
et al., 2021), shows how exceptional the year 2016 was in
terms of these variables and especially in terms of their mul-
tivariate combination (Fig. 9).

The KNMI–LENTIS PD ensemble provides many more
samples of winter-wheat growing conditions (1440 simulated
seasons) than the observed historical record. The simulated
data include some seasons with similar conditions to or even
more extreme compounding conditions than the 2016 ob-
served event (Fig. 9). This provides an opportunity to better
understand the relationship between the governing variables
and to investigate (remote) drivers of compounding condi-
tions. Note that biases in the simulated data (here we find the
model has a low bias in the number of vernalizing days) can
impact estimates of event likelihood and process understand-
ing.

This case study highlights the strength of time slice large
ensembles in compound-event research. Also for other types
of compound events (preconditioned events, multivariate
events, temporally compounding events, and spatially com-
pounding events; Zscheischler et al., 2020), large-ensemble
data can help to, for example, quantify event likelihood and
identify drivers and modulators of events (Bevacqua et al.,
2021).

4.4 Added value for climate-impact modelling

Climate science, apart from aiming to improve our scien-
tific understanding of the physical Earth system, also aims
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Figure 7. Ensemble climatology examples. For PD in blue and 2 K in red: (a) return interval in years of surface snowmelt rates at the
eastern Greenland Ice Sheet grid point (72◦ N, −30◦ E); (b) scatter plot of total column-integrated soil moisture content and near-surface
temperature at the southern England grid point (51◦ N, −2◦ E) with the cloud mean as a dot and 2 standard deviations in the ellipse; and
(c) annual cycle of precipitation at the Horn of Africa grid point (8◦ N, 48◦ E). In (c), boxplots for the ensemble spread are defined as follows:
box, first quartile–median–third quartile (interquartile range (IQR)); bottom whisker, −1.5× IQR – first quartile; top whisker, third quartile
– +1.5× IQR; outliers, values outside of these limits.

Figure 8. Hottest day in De Bilt, the Netherlands, in the PD ensemble. (a) Europe maximum surface air temperature over Europe on the
hottest day (colours) and sea level pressure (contours every 5 hPa). (b) Surface energy balance components in De Bilt, the Netherlands,
during the days around the hottest day (pink shading) with the latent heat flux (hfls), sensible heat flux (hfss), downwelling shortwave
radiation (rsds), upwelling shortwave radiation (rsus), downwelling longwave radiation (rlds), and upwelling longwave radiation (rlus). The
date format is year-month-day. (c) Northern Hemisphere sea level pressure in colours and in contours every 5 hPa.

to inform society and policy-makers of (future) risks caused
by adverse weather. It is during extreme events that such
risks are highest. However, extreme weather events (e.g. the
hottest or wettest days) do not necessarily link 1-to-1 to ex-
treme impact events (highest heat stress or biggest floods,
e.g. van der Wiel et al., 2020). This is due to the complex
non-linear relationships between weather and impacts. In this

section we demonstrate this phenomenon and show that an
approach of “ensemble climate-impact modelling”, as for ex-
ample proposed by van der Wiel et al. (2020), enhances our
understanding of the weather–impact relationship and im-
proves estimates of (changing) societal risk.

For this case study, we simulate electricity production
from solar radiation (photovoltaics, PV) with a relatively
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Figure 9. Example compound-event research. Analysis of meteorological circumstances that lead to extreme wheat yield loss in France after
Ben-Ari et al. (2018). Presented values are the area average of the northern part of France (47–50◦ N, 0–7◦ E). (a) Scatter plot of number of
vernalizing days in autumn (October–December) versus daily average precipitation in spring of the next year (April–July). Large black dots
are ERA5 values (1950–2021), where 2016 is marked as a red dot. Small blue dots are KNMI–LENTIS PD values; horizontal and vertical
lines correspond to the average (solid lines) ±1 standard deviation (dotted lines). (b) Boxplots of the number of vernalizing days and the
daily average precipitation for both KNMI–LENTIS PD and ERA5.

simple model that considers incoming solar radiation, near-
surface temperatures, and near-surface wind speeds (Jerez
et al., 2015; van der Wiel et al., 2019b). We use daily data
at a single grid point in the Netherlands (De Bilt; 52.3◦ N,
4.9◦ E). Higher values of incoming radiation in summer (sun-
nier conditions and relatively long daylight hours) lead to
higher values of PV generation, but the heating of solar cells
negatively impacts generation (heating mostly related to high
temperatures, some cooling provided by wind). We com-
puted PV potential for all days in the KNMI–LENTIS PD en-
semble (1600 years, > 0.5× 106 d). Here, we investigate the
relationship between meteorological variables and PV poten-
tial, as well as the timing of extreme production days.

As expected, PV potential is strongly related to incoming
solar radiation (Fig. 10a). The histogram shows a cluster for
both DJF and JJA, indicating that solar cells work more ef-
ficiently in winter. This is due to differences in solar cell
heating and daylight hours: for 100 W m−2 incoming solar
radiation, the PV potential in DJF is approximately 27 %,
whereas in JJA it is approximately 18 %. On the other hand,
the large seasonal difference in incoming radiation at this lat-
itude makes summers about 5 times more productive in terms
of PV (Fig. 10b). Therefore, extreme production events, i.e.
days with extremely high PV potential, are expected to occur
in late spring–early summer. Indeed the annual maxima of
PV potential occur in early JJA, and they do not coincide with
the annual maxima of incoming solar radiation (Fig. 10b),
which occur later.

This case study highlights some of the possibilities of en-
semble climate-impact modelling. Though extreme PV pro-
duction days are not likely to put society at risk, the (tem-
poral) disconnect between weather extremes on the one hand
and impact extremes on the other hand is obvious. As shown
in earlier sections, large-ensemble climate modelling can
considerably contribute towards understanding events in the
tail of the distribution. This is true not only for meteorologi-
cal extremes (e.g. Sect. 4.2) but equally so for climate-impact
extremes that are more closely related to possible natural or
societal impacts/risk.

5 Conclusions

We have presented the KNMI Large Ensemble Time Slice
(KNMI–LENTIS): a new large ensemble produced with the
re-tuned version of the global climate model EC-Earth3. The
time slice approach is different from the more traditional
transient ensembles available from other institutions. Its ad-
vantage is that the signals of natural variability and climate
change are not mixed due to our assumption that the forced
change in a slice is small. Therefore, the variability we see in
a time slice is only natural variability at a given GMST level
and does not include a climate change signal. This renders
our large ensemble specifically suitable to studying climate
variability and changes therein between the present-day cli-
mate and a warmer future climate. Furthermore, the large en-
semble is particularly geared towards research into the land–
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Figure 10. Example ensemble climate-impact modelling. (a) Scatter density plots showing the relationships between photovoltaics (PV) po-
tential and other variables in DJF and JJA. From left to right: incoming solar radiation, solar cell temperature, and daylight hours. (b) Example
time series of PV potential and incoming solar radiation. Triangles at the top show timing of annual maxima.

atmosphere interface, with 3-hourly output of the surface wa-
ter balance and surface energy balance variables. ”two orders
of magnitude” The ensemble consists of two distinct time
slices: a present-day time slice and a +2 K warmer future
time slice relative to the present day. The present-day time
slice is represented by the years 2000–2009 and forced with
CMIP6 historical forcing. The+2 K time slice is represented
by the years 2075–2084 and forced with CMIP6 SSP2-4.5
forcing. Each time slice consists of 1600 simulated model
years in 160 segments of 10 years.

The initial conditions for the ensemble members are gener-
ated with a combination of micro- and macro-perturbations.
We have quantified the assumptions underlying the setup,
which are that the time slice simulation length is small
enough for a forced climate change signal to be minor in
most cases and for the ensemble size to be sufficient to sam-
ple the full distribution of climate variability. We have pro-
vided examples of how this ensemble can be used to demon-
strate its added value for extreme- and compound-event re-
search and for climate-impact modelling. The model and
thus our simulations have a considerable warm bias in the
Southern Ocean and over Antarctica. Future users of KNMI–
LENTIS are advised to make in-depth comparisons with ob-
servational or reanalysis data, especially when their studies
focus on ocean processes, on locations in the Southern Hemi-
sphere, or on teleconnections involving both hemispheres.

Appendix A: Ensemble label and CMIP6 variant label
of KNMI–LENTIS simulations

All ensemble simulations have a unique name that reflects
the start year and forcing, the parent, and the seed (Table A1).
The start year is noted in the first digit of the KNMI–LENTIS
simulation name: “h” for the PD time slice and “s” for the
2 K time slice. The parent is reflected in the second and third
digit. The seed is reflected in the fourth digit.

Further, all KNMI–LENTIS simulations are labelled per
the CMIP6 convention of variant labelling. A variant la-
bel is made from four components: the realization index r ,
the initialization index i, the physics index p, and the forc-
ing index f . Further details on CMIP6 variant labelling be
found in the “CMIP6 Participation Guidance for Modelers”:
https://pcmdi.llnl.gov/CMIP6/Guide/modelers.html (last ac-
cess: 20 September 2022).

In the KNMI–LENTIS simulations, the forcing is reflected
in the first digit of the realization index r of the variant
label. For the historical simulations, numbers in the range
r1000–r1999 have been reserved. For SSP2-4.5, numbers in
the range r5000–r5999 have been reserved. The parent is
reflected in the second and third digit of the realization in-
dex r of the variant label (rX01X–rX16X). The seed is re-
flected in the fourth digit of the realization index r: (rXXX0–
rXXX9), The seed is also reflected in the initialization index
i of the variant label (i0–i9), so this is double information.
The physics index p5 has been reserved for the ECE3p5 ver-
sion, so all KNMI–LENTIS simulations have the p5 label.
The forcing index f of the variant label is kept at 1 for all
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KNMI–LENTIS simulations. As an example, variant label
r5119i9p5f1 refers to the 2 K time slice with parent 11 and
randomizing seed number 9. The physics index is 5, meaning
the run is done with the ECE3p5 version of EC-Earth3.

Table A1. Naming convention of LENTIS members. The simula-
tions are named with a four-character name: kllm. The term “k”
is a placeholder to denote the start year. Options are h for 2000-
historical and s for 2075-SSP2-4.5. The term “ll” is a placeholder to
denote the parent. Parents run from 01 to 16, from whose full tran-
sient simulation the initial conditions are taken. The term “m” is a
placeholder to denote the seed. Seeds run from 0 to 9, corresponding
to the randomizing seed of the micro-perturbation.

ll (parent) (→)
k01m k02m . . . k16m

m (seed) (↓)

kll0 k010 k020 . . . k160
kll1 k011 k021 . . . k161
. . . . . . . . . . . . . . .
kll9 k019 k029 . . . k169
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