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Climate change has a large influence on the occurrence of extreme hydrological

events. However, reliable estimates of future extreme event probabilities,

especially when needed locally, require very long time series with hydrological

models, which is often not possible due to computational constraints. In this study

we take advantage of two recent developments that allow for more detailed and

local estimates of future hydrological extremes. New large climate ensembles

(LE) now provide more insight on the occurrence of hydrological extremes

as they o�er order of magnitude more realizations of future weather. At the

same time recent developments in Machine Learning (ML) in hydrology create

great opportunities to study current and upcoming problems in a new way,

including and combining large amounts of data. In this study, we combined LE

together with a local, observation based ML model framework with the goal

to see if and how these aspects can be combined and to simulate, assess and

produce estimates of hydrological extremes under di�erent warming levels for

local scales. For this, first a new post-processing approach was developed that

allowed us to use LE simulation data for local applications. The simulation results

of discharge extreme events under di�erent warming levels were assessed in

terms of frequency, duration and intensity and number of events at national,

regional and local scales. Clear seasonal cycles with increased low flow frequency

were observed for summer and autumn months as well as increased high flow

periods for early spring. For both extreme events, the 3C warmer climate scenario

showed the highest percentages. Regional di�erences were seen in terms of shifts

and range. These trends were further refined into location specific results. The

shifts and trends observed between the di�erent scenarios were due to a change

in climate variability. In this study we show that by combining the wealth of

information from LE and the speed and local relevance of ML models we can

advance the state-of-the-art when it comes to modeling hydrological extremes

under di�erent climate change scenarios for national, regional and local scale

assessments providing relevant information for water management in terms of

long term planning.
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1. Introduction

Throughout the last decades it has become increasingly evident

that climate change has a significant impact on the hydrological

cycle, which is expected to increase even more in the future (IPCC

report, Pachauri et al., 2015; Masson-Delmotte et al., 2022). Climate

change leads to more extreme weather events, which can translate

to more extreme flood and drought events as an example (Milly

et al., 2005; Samaniego et al., 2018; van der Wiel et al., 2019b).

These extreme events create challenging conditions for both nature

and society, where for example drought conditions can lead to

agricultural (crop loss and increased irrigation requirements),

industrial (energy supply due to cooling water being too warm) and

domestic impacts (drinking water shortages, heatwaves, health) and

negatively impact ecosystems (e.g., wildfires, ecosystem collapse)

(Vörösmarty et al., 2010). Research has shown that the occurrence

of extreme events is changing due to climate change, leading not

only to a higher frequency of events (e.g., leading to multi-year

events as observed by van derWiel et al., 2022) but alsomore severe

events (Wanders and Wada, 2015). To get a better understanding

and insight for future adaptationmeasures and planning, being able

to analyze such extreme events under climate change is essential not

only on the large but also local decision making scale.

Modeling of extreme events and the influence of climate change

on the hydrological cycle has been done in various ways. Regarding

extreme events and their return period, statistical approaches are

a commonly used method, where the sample statistics of extreme

events are extrapolated using an assumed probability distribution

of extremes such as Gumbel or GEV. However, observational

records are often short or already affected by trends, thus making

it difficult to provide accurate extrapolations of the probability of

extreme events and their return periods in the future. In addition,

this approach underlies the assumption that extreme events follow

a single given probability distribution, which is not always the case

for extreme events.

Regarding modeling the influence of climate change based on

physical-based models and the effect on extreme event, climate

models are used including simulations of different climate change

scenarios. One of the simplest method including Global Climate

Models (GCMs) as input data, includes using the projected change

from GCMs as input data, which is used and applied to local

timeseries (Fowler et al., 2007; Graham et al., 2007). This method

has the advantage that it is computational efficient however

(excluding the GCM runtime), however it can be difficult to

reproduce the higher order statistics (e.g., rainfall intermittence

or auto-correlation) and inter-dependencies between different

variables. Directly using GCM output can also be done, as these

models provide physically consistent and constrained simulations

of a future climate. The downside of this approach is that

GCM simulations are hampered by biases and the strong climate

change signal in transient GCM simulations make it difficult to

get a large enough sample size to study changes in the tails

of the distribution. Coupling GCMs and Global Hydrological

Models (GHMs) enables to simulate the influence of climate

change throughout the hydrological cycle based on physically

based models. Regional Climate Models (RCMs), which are

complementary to GHMs, can be used to bridge the gap of GHMs

studies for more regional climate assessments, as these models

provide more detailed information and clear advantages in terms

of modeling regional scale impacts (Rummukainen, 2010; Giorgi,

2019). These type of climate models can be linked to regional

hydrological models as well (Graham et al., 2007). The opportunity

here is to have processes connected and directly responding to

the corresponding climate change model forcing. A drawback

regarding this method to assess and model climate change impact

is the computational intensive demand for running such large

scale physically based model combinations. Furthermore, both

the statistical and combined model approach only produce a few

realizations of a timeseries including an extreme event, which

makes robust statistical inferences difficult, if not impossible.

Large Climate Ensembles (LE) have been used more recently

to address and assess the influence of climate change and its

impacts on various aspects of Earth’s physical climate (Deser

et al., 2020; Maher et al., 2021). Including LE in modeling studies

allows to assess extreme events more specifically, as these include

many realizations of possible events. Because of their time-slice

experimental design, these data have no forced trend, setting them

apart from other transient climate change simulations. LE data

suffer from the same biases as other GCM output (e.g., Kelder et al.,

2022), however they do provide the opportunity to empirically

study the tails of the distributions and thus look at (hydrological)

extreme events, i.e., without having to use statistical extrapolation

methods for the tail of the distributions (van der Wiel et al., 2019a,

2021). Nonetheless, in cases like these where GCMs and GHMs

are combined for assessing different scenarios, large computational

infrastructures are required. Furthermore, these assessments are

on a coarse spatial scale (10–50 km), while for certain interest

finer, more local information is necessary which would ideally be

computed in a fast and flexible manner, especially for national-local

water management aspects.

Machine Learning (ML) provides the chance to facilitate data

intensive modeling with more efficient and computational less

intensive efforts. In the past years, several studies have shown that

ML models such as Long Short-Term Memory Models (LSTM)

or Random Forests (RF) are suitable for predicting hydrological

variables such as discharge or groundwater levels (Kratzert et al.,

2018; Hauswirth et al., 2021; Koch et al., 2021), often even

outperforming the conventional physically based models (Mai

et al., 2022). However, even when considering the potential of

machine learning in hydrology, the challenge regarding simulating

extreme events remain (Hauswirth et al., 2021, 2022). ML models

are generally good in simulating what they have seen during

training, however extrapolating to “unseen” events is not possible

and as such makes it also difficult to apply to the climate

change signal. A focus on extreme events can be achieved

through specific choices in training and testing, however this

method faces the same challenges as more traditional statistical

approaches (see above) as observational records are often limited

and unbalanced in terms of the availability of extreme events.

Another option would be using simulated data for training

and testing (Felsche and Ludwig, 2021), though these introduce

other types of uncertainty compared to observational data (see

above, e.g., GCM limitations), in general the use of observations

is preferred.
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AsML providemany computational advantages it makes it very

attractive to apply ML to make projections of future extremes. This

would reduce computational demand and make projections more

locally relevant as reliable information can be provided at the local

scale (Hauswirth et al., 2021). However, the future is likely going to

contain a lot of “unseen” and extreme events providing challenges

for ML to make accurate projections. Therefore, the objective of

this study is to test if and how climate changemodeling information

from LEs can be combined withMLmodels to assess the probability

of extreme events under climate change. Furthermore, the potential

of this setup assessing the effect of climate change as well as

providing estimates on discharge low and high flow events at

national, regional and local scale will be assessed. We do this by

using aMLmodeling framework, including several location specific

ML models that are trained on historical observations, developed

for the case study of the Netherlands, and GCM LE simulation

data to provide outlooks for future warming scenarios. The ML

modeling framework used was developed especially for this region

in previous studies (Hauswirth et al., 2021, 2022), and has shown to

be suitable for local predictions and seasonal forecasts, using both

local but also larger scale input data. We approach the problem of

simulating extreme events by introducing a post-processing step at

the end of the ML framework, where we use the characteristics of

the low flow distributions, taken fromhistorical observations, based

on the assumption that the tail of the distribution serves as baseline

for extreme event extrapolation. This general post-processing step

can be implemented for every station of interest, which allows us

to include location specific characteristics. This in turn allows us to

assess the influence of global climate change at national, regional

and local scale.

Information regarding the modeling framework and the post-

processing approach, as well as the use of the LE used in this study

will be further elaborated in Section 2. Section 3 will first include the

“proof of concept” of the post-processing step based on historical

observations and simulations. Afterwards the focus will be shifted

toward the scenario results and spatial trends covering national,

regional to local scales. The approach, findings and challenges of

incorporating climate change aspects in ML will be further along

discussed in Section 4, followed by a conclusion (Section 5).

2. Materials and methods

Information regarding the data used, including historical

observations, LE and the combined input data set used for the

ML framework can be found in Sections 2.1.1–2.1.3. The ML

framework will be explained in Section 2.2, including the new post-

processing step (Section 2.2.1) and its evaluation (Section 2.2.2).

Explanations on the analysis of extreme events, such as droughts

and floods, will be given in Section 2.3.

2.1. Data

2.1.1. Historical observations
Historical observations of discharge, tidal information,

precipitation and evapotranspiration were gathered from the

national monitoring network of Rijkswaterstaat (National Water

Authority of the Netherlands) and the KNMI (Royal Netherlands

Meteorological Institute) for different locations throughout the

Netherlands for the time period 1980 to 2019. Station selection

and data processing steps were done according to Hauswirth

et al. (2021), which describes the original development of the

ML modeling framework applied here. The input dataset for

training and testing this framework consisted of a reduced set

of 5 variables including precipitation and evapotranspiration

at a central measuring location called deBilt, discharge of the

Rhine (at station Lobith) and Meuse (at station Eijsden) at the

border of the Netherlands, as well tidal observations close to

one of the biggest dam infrastructure Haringvliet along the coast

(Supplementary Figure S1). For further information regarding

historical input data and pre-processing of the observations see

Hauswirth et al. (2021).

2.1.2. Large climate model ensembles
Climate change information was included by incorporating

large ensembles of climate model data as input data for this

study. These large climate ensembles consist of different warming

scenarios and are a simulation product of the GCM EC-Earth

v2.3, which combines an atmospheric, an ocean, a land surface,

and a sea ice model (Hazeleger et al., 2012). The scenarios are

based on different levels of global warming (i.e., global mean

surface temperature values, GMST): the “present-day” scenario

includes a GMST equal to GMST observed between 2011 and

2015, the “2◦C warming” and “3◦C warming” scenario a GMST

of observed pre-industiral temperature +2◦C warming and +3◦C

warming, respectively van der Wiel et al. (2019b). The large

climate ensembles are made by first running 16 long transient

simulations with historical forcing (based on period 1860–2005)

and RCP8.5 (for years 2006–2100). In a following step, from each

of the 16 simulations 25 ensemble members were re-initialized. Re-

initialization was done with perturbed physics that were matching

the observed GMST for more details we refer to the Supplementary

material of van der Wiel et al. (2019b). Every scenario consists

of 400 ensemble members (16 x 25) of a time period of 5

years, creating a 2000 year ensemble dataset for each warming or

GMST level. The large climate ensembles have been previously

incorporated in various studies such as by van der Wiel et al.

(2019b, 2020, 2021) and van der Wiel and Bintanja (2021).

2.1.3. Input data for ML models
For the climate change scenario simulations, the same variables

that were incorporated in the training and testing of the ML

framework were used (Section 2.1.1). The precipitation was directly

taken from the LE. Reference potential evaporation was calculated

using Makkink (de Bruin and Lablans, 1998) based on the variables

temperature, surface incoming solar radiation, and mean sea level

pressure provided by the LE. Discharge ensembles were created

by running PCR-GLOBWB 2 (Sutanudjaja et al., 2018), a global

physically based water balancemodel at 5 arcmin resolution, for the

Rhine andMeuse catchment using the LE asmeteorological forcing.

For sea-level timeseries, the base approach used in Hauswirth

et al. (2022) was incorporated. In the latter study, the historic

tide level was simulated using the Pytides Python module.
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Anomalies between observed and predicted sea level fluctuations

were computed and combined with multi-linear regression model

to compute tidal information input dataset based on anomalies, u

and v windspeed. In this case the wind speed data from the LE were

used to compute the tidal information using the same multi-linear

regression model.

The LE input data was bias corrected based on the observational

records for the five input variables (precipitation, evaporation,

discharge (two locations), and tidal information): linear bias

correction was used for discharge input time series, same for

wind speed data which was used to compute the tidal timeseries.

For precipitation the fraction of dry days was calculated, which

was then used to correct the precipitation data from the large

climate ensembles by imposing a threshold to the LE precipitation

below which precipitation was assumed zero. Next, the remaining

annual total precipitation values for the full LE were compared

and corrected against to the total annual precipitation values

of the observations. Evaporation was bias corrected using mean

and standard deviation assuming a normal distribution. The

same principles were used for all different scenarios, for more

information see van der Wiel et al. (2019b). In line with previous

work by Hauswirth et al. (2021, 2022), the input data was extended

in size by using a lagged timeseries approach, which includes

additional timeseries of the input variables corresponding to the

first three lags to the input dataset. Hauswirth et al. (2021)

incorporated the lagged input identified by using the partial

autocorrelation function (PACF) to extend the input data set

and to help explain second order statistics that provide valuable

information in timeseries analysis that the modeling framework

was trained on. To fill the missing values that were obtained

through including the lagged input data, the climatological mean

of the present-day LE were used.

2.2. Modeling framework

The modeling framework used in this study includes different

ML methods, ranging from simple linear regression methods to

more complex methods such as neural networks. In terms of

linear regression models, Multi-linear Regression (MReg), and

Lasso Regression (LASSO) were included. The latter including an

additional benefit of being able to eliminating variables which carry

less information than others (Bardsley et al., 2015). Furthermore,

regression types which are build on tree like structures, such as

Decision Tree (DT), and ensembles of tree structures such and

Random Forest (RF, Breiman, 2001) are part of the modeling

framework. The most complex method included is the Long Short-

TermMemory (LSTM), a recurrent neural network first introduced

by Hochreiter and Schmidhuber (1997). LSTMs have the ability

invoke a sort of memory provided by their internal state, setting

them apart from the classical feedword networks, and therefore

allowing them learn and simulate long-term depencies.

The modeling framework including these methods was

developed and used to simulate historical hydrological timeseries

in previous work by Hauswirth et al. (2021). For every location

of interest from the national monitoring network, a separate

ML model for all these methods was trained and tested on

historical observations. The different models were tested out for

their suitability to simulate hydrological target variables such as

discharge, surface water levels and surface water temperatures, and

groundwater levels (Hauswirth et al., 2021). For this study however,

we will focus on discharge predictions and use all the different ML

methods.

The input dataset was of the original modeling framework was

kept simple and replaceable by only incorporating five different

variables including precipitation, evaporation, discharge at two

locations and tidal information (see Section 2.1.1 and for locations

Supplementary Figure S1). Hauswirth et al. (2022) used the same

framework combined with seasonal reforecasting information in a

hindcast setting. In this study the input data set will be replaced by

the LE dataset (Section 2.1.2). The ML models, will be used with

this new input data without retraining, which is possible because

of the bias corrections applied. Using the set of ensemble data will

create a set of discharge ensembles for the corresponding climate

change scenarios. Introducing the LE into the modeling framework

without retraining creates the challenge of the different models not

having seen the additional information regarding extreme events.

ML models experience difficulties to extrapolate data points out of

what they have seen in training. Therefore, we are introducing a

new separate post-processing step, which supports and corrects the

simulations regarding extreme values of their distribution.

2.2.1. Post-processing
The post-processing approach introduced in this study is

done to correct for the fact that the ML modeling framework

struggles to simulate extreme events that were not represented

in the training dataset (due to limited event records), which was

seen in a previous study by Hauswirth et al. (2021). Furthermore,

the step of transforming (normalizing) and back-transforming the

data in ML routines and the choice in transformer can influence

the simulations results. In this case, the ML model framework

includes the quantile transformer, normalizing the data between 0

and 1. Running the same framework with the input data based on

the LE leads to simulation results, where values which are lower

than in the observational training data are computed as 0 before

back-transformation, whereas after the latter the simulation results

for discharge show a distinct cutoff for low values. This can for

example be seen if the simulation results are compared to historical

observations looking if plotted as cumulative distribution curves

(CDFs) (or also see Supplementary Figure S2).

Figure 1 is summarizing the general idea of the post-processing

approach in a schematic way, representing the CDFs of the

historical observation record in black, the simulated historical

simulation and the simulation ensemble member based on the LE

in orange. The cutoff for low and high values described above

is highlighted by the red horizontal line. To correct for these

cutoffs we propose the post-processing step, which is based on the

distribution of the historical observations of a given station and

the extreme events represented in the distribution tail. This non

parametric approach is based on the assumption that the form

of the distribution tail for extreme events (droughts) remains the

same. The key assumption here is that, although the distribution

may shift or becomes wider or narrower, the form of the tails above
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FIGURE 1

Schematic of post-processing approach based on information of historical observation CDF (black), which is transferred to simulation results

(orange) of historical simulations (top) and single ensemble member of simulated target variable based on LE data (bottom). The information

regarding tail of the distribution is transferred to simulation results by shifting and extrapolating the simulated tail (black arrow) to the shape of the

historical observation one (indicated by red dotted line), resulting in a corrected target value (red, most right).

the cutoffs percentiles (determined by themaximum andminimum

values found in the training data set) does not change. Therefore,

allowing for more complex distributions to be corrected rather than

distributions that can only be parameterized and thus brings the

advantage of not assuming a distribution a-priory. The information

from these extreme events probabilities will be used to extend the

ensemble simulations of the target variable, which is indicated by

the dotted red lines for both the historic (top) and the LE simulation

case (bottom) in Figure 1 resulting in corrected simulation results

which portray similar but extended tails.

An example in more detail: while the CDF of the observations

(black) would represent values for the probability ranging from

0 to 1, the simulation (orange) would only indicate values

corresponding to probabilities of 0.23–0.98, as an example for

LE simulation in Figure 1. For the post-processing we take into

account the shape of the tail of the observation distribution. This is

done by taking the form of the CDF of the observations below the

cumulative probability value of the simulated value that represents

the cutoff of the lowest observation (0.23 in this case, indicated

by the horizontal line in red), if we want to correct for low flows.

Furthermore, the number of simulation values that need correction

is determined by using the bin count for the lowest simulation

value. For the correction the full observation record as well as the

full 2000 year simulation data was considered.

The correction step then consists of assigning to each simulated

value that needs correcting a value by extrapolating back following

the tail of the observed distribution, where the order of assigned

values is determined by the order of the simulated values before

back transformation (on the 0–1 scale). If the extrapolated tail

yields negative values, it is squeezed to fit between zero and the

value of the minimum observed value. The same procedure is

followed for the upper extreme values of the simulations. The form

of the CDF of the observations for range larger than the CDF cutoff

value of the simulations is used to extrapolate the simulated values

larger than the maximum observed value.

This general post-processing step can be implemented for every

location of interest, which allows to include the location specific

characteristics by using the station specific observation records

to extract the information regarding the distribution tail. This in

turn gives the possibility to assess climate change influence at

national, regional and local scale. The limitations of the general

post-processing step will be discussed in Section 4.

2.2.2. Evaluation
Evaluation of the modeling framework, including the new

post-processing steps is validated on historical simulations before

applying it to the ensemble simulation results. In this evaluation

we specifically focus on the ability of the post-processing routine to

reproduce “unseen” events. For this the same modeling framework

as in Hauswirth et al. (2021) is used to the test the historic

simulations results with and without the post-processing step.

The models are trained and tested on a shorter sample of the

historical records (1980–2019), with the 20th and 80th percentile

of observations representing low and high flows being withheld

and thus can be regarded as “unseen” events. The 20th and 80th

percentile serve as an example, in other cases the cutoff may be at

other percentiles. This example is provided to imitate the situation

the models will come across when incorporating the LE for future

scenarios (where extreme events will be included that were clearly
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out of the training set range or outside of the distribution of

the observational record). The post-processing step is tested on

the periods including most “unseen” events to see whether these

low/high flow periods can be recreated by the model, having not

seen them in the training phase. The CDFs of the observational

records for the validation period, the simulations with and without

the additional post-processing step will be assessed to demonstrate

the potential of the suggested post-processing approach.

2.3. Analysis of extreme events

For the analysis of extreme events we looked at the change

in frequency, average duration, average intensity and number of

events for national, regional and local scale. To define low and

high flows, the 20th and 80th percentile of the annual discharge

was chosen. Regarding frequency, the percentage of discharge

that falls into these categories was computed for every month.

For average duration, average intensity and number of events a

threshold of minimum 7 continuous days was introduced to classify

time steps as low or high flow events. The average duration for

events in a given month was calculated as the average number of

days of extreme events that started in that month (and potentially

continued into the following months). The average intensity was

computed by including the mean discharge of the extreme events

(thus > 7 days above or below a threshold) for the station of

interest. The number of events was calculated over the whole

ensemble simulations. Furthermore, percentage difference between

the scenarios means, 20th and 80th percentiles and standard

deviations were computed to assess whether the simulation results

were underlying a change in climate variability.

3. Results

The results section will lead from the proof of concept for the

post-processing approach to the results of the different climate

change scenario simulations. The latter will include a focus on

one ML model and the general trends and patterns regarding the

different climate change scenarios and their influence on extreme

events. Furthermore, the results will be reported first on a national

scale, before breaking them down to regional and local results,

highlighting a few stations separately. Information and results from

different ML models will be listed in the Supplementary material.

3.1. Proof of concept

The proof of concept for the suggested post-processing step

is highlighted in Figure 2, where the observations as well as the

simulated timeseries of one ML model and one station is shown.

The model simulation in blue (Figure 2A), which did not undergo

the separate post-processing step, is not able to simulate the low

and high flows for this station. This is due to a) having excluded the

20th and 80th percentile in training but also b) the transformer used

for the input data is not able to back-transform values that were

outside the range of values included in the input data (used to fit

the transformer initially). Including the post-processing step, which

incorporates information gained from the tail of the observation

distribution, corrects the simulation results for the low and high

flow periods as seen for the timeseries in red (center panel). The

correction for the discharge simulation can furthermore be seen

in the right panel including the CDF curves for observations and

simulations (with and without correction). The CDF curve of the

corrected simulation is following the one of the observations, both

in terms of range but also shape. The effect of the post processing

on the simulations including the LE are further highlighted in

Supplementary Figure S2 for the different scenarios.

3.2. Scenario results

The focus of the different scenario results was put on extreme

events such as droughts and floods, which were analyzed in terms

of their frequency, duration and intensity. Regarding frequency,

the discharge percentage that fell into the 20th (low flow), and

80th (high flow) percentile for everymonth was computed. Figure 3

presents the results based on the average of all the stations and all

ML models, therefore representing a national and model average.

The low flows are indicated in yellow (present-day, PD), orange

(2◦C, 2C) and red (3◦C, 3C) for the different warming scenarios, the

high flows are represented in light blue (PD), blue (2C), and dark

blue (3C). The white spacing between the high and low flow bars

represents the normal flow (between the 20th and 80th percentile)

during the different months.

For every scenario, it can be seen that low flows occur in all

months with varying frequencies. A seasonal cycle can be observed

in all scenarios, represented by an increase in low flow frequency

throughout summer and autumn (Jun-Sep) with a max of 54%

(3C), 49% (2C), and 44% (PD) in Sep compared to earlier in the

year. Lowest frequency (∼ 5% for all scenarios) in low flow events

are showing in early spring, which is due to snow melt dynamics

influencing stations along the Rhine, and was also observed in the

previous forecasting study by Hauswirth et al. (2022).

Differences between scenarios for the low flow are largest

during the second half to the year (Jul-Dec, up to 6% between

scenarios), while Jan-May show comparable percentages of

discharge falling into the low flow category (up to 0.5%).

Shifting the focus to the seasonal pattern of the high flow

events, an increase in high flow frequency throughout Dec-Mar,

followed by a decrease during the following months is observed for

all scenarios. Highest percentages are seen for Mar with 50% (3C),

48% (2C), and 45% (PD). As can be seen, not only the present day

variation in the frequency of high and low flows complement each

other, as expected, but also the changes in high and low frequencies

under climate change are complementary, showing opposite trends

where e.g., lower low flows during Feb and Mar but increased high

flow percentages due to shifts in snow melt dynamics.

Smaller changes between the different scenarios are observed

in the high flow frequency. Feb, Mar and Apr represent months

in which 2C and 3C lead to a higher frequency, however the

differences between the latter two are relatively small (1–4%)

compared to the ones observed for the low flows (4–6%). Summer

and autumn months which show a decline in high flow frequency

only indicate minor differences between the scenarios.

Frontiers inWater 06 frontiersin.org

https://doi.org/10.3389/frwa.2023.1108108
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Hauswirth et al. 10.3389/frwa.2023.1108108

FIGURE 2

Example station Lobith (MReg model) including the (A) discharge observations (gray) and the simulated discharge (withholding 20th and 80th

percentile in training, blue), (B) post-processed discharge simulation (red) and (C) discharge CDF including observations (obs) and simulations (sim),

both raw and post.

The trends and patterns seen for both low and high flows in the

different scenarios are due to a change in climate variability, which

was found by looking into the mean, 20th and 80th percentile,

and standard deviation (also shown in Supplementary Figure S8).

While the changes in the mean discharge under 2C and 3C lies

below 5% compared to the PD scenario for the large majority of

the stations, the changes regarding the low flows (20th percentile)

range between 10 and 20%. Analysis of the simulation results of the

different ML models (Supplementary Figures S4–S7) indicates that

the direction and magnitude of trends and changes is similar across

the methods. The absolute frequency between the different ML

methods differ but the direction of change is similar for all models.

Due to the large amount of data provided by the LE the changes

seen are statistically significant. We additionally incorporated an

uncertainty analysis based on the bootstrap approach, where we

included the national and model average data and calculated the

mean after randomly dropping 10% of the data for each month

and scenario. This was repeated 1,000 times. From the selection of

means, the 10th and 90th percentile were chosen for the whiskers,

which are represented in Figure 3 in black. Regarding model

forcing, it was not possible to assess the GCM uncertainty as only

one LE with this magnitude was available.

The increasing severity of low flows in different months was

also evaluated in terms of duration, number of events and average

intensity. Figure 4A presents the average event duration based on

the starting month of the low flow events. Early spring to autumn

show an increase in average duration distribution for different

months but also between the scenarios, with the 3C indicating the

largest variation (Jul, 9–27 days). Differences in median duration

between scenarios are minor during winter months and start to

increase in May-Sep (14 days, July, 3C). Largest variations are

observed in the 90th percentile (May, 70 days - Nov, 30 days),

with largest differences between scenarios in month Jun and Jul.

The increase in average duration (seen in the distribution but

also the 90th percentile) leads to events which are overlapping

with the following months, which corresponds to the higher low

flow percentage observed in Figure 3 for the summer and autumn

months. The number of events seen in Figure 4B show the same

seasonal pattern as observed in Figure 3. While Jan-May show

similar number of events for all scenarios, clear differences are

observed for summer and autumn months with 3C showing the

highest number of events. In terms of average intensity (Figure 4C),

differences in median intensity are small throughout all months

and scenarios. However, the largest variation of average intensity

is found for months Feb–May, which are also the months with the

lowest number of events.

Focusing on the national scale for assessing the differences in

scenario results show that both high and low flow percentages

represent a seasonal cycle with increased low flow frequency during

summer and autumn months, while high flow frequencies are

increasing during (early) spring months.

3.3. Spatial characteristics-regionally

Moving from the national scale to a more regional assessment,

Figure 5 shows the averaged results for stations of 5 different

regions based on the model input of the LSTMmodel and the same

data analysis used as in Figure 3.

Focusing on low flow frequency first, a similar underlying

pattern in terms of seasonal low flows can be observed as for the

national average (Figure 3). Compared to the latter, shifts in terms

of an earlier increase in low flow frequency (northern and eastern

region), as well as higher maximum percentages (central: ∼58%,

eastern: ∼70%, northern: ∼48%, and western region: ∼55% for

3C) is observed. Furthermore, the differences between the scenarios

are more pronounced, especially for the summer months for which

increased low flow percentages are recorded.

The central region is strongly influenced by incoming Rhine

discharge, which was also seen in previous work by Hauswirth

et al. (2021). Compared to the national average, spring months

including Apr and May show a lower percentage of low flows for

these months, likely due to the snow melt signal captured in the

Rhine discharge. However, regions which are also linked to the

Rhine (eastern, northern and western) show a stronger and earlier

increase in low flows as well as decrease in the winter (Nov, Dec,

Jan, Feb).
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FIGURE 3

Seasonal cycle of the percentage of time in a month of low and high flows under di�erent scenarios including present day, 2◦C and 3◦C warmer

climate (PD, 2C, and 3C). Low flows are highlighted in yellow (PD), orange (2C) and red (3C), high flows in light blue (PD), blue (2C), and dark blue

(3C). Results are averaged over all models for all stations of the study area. Whisker represent 20th and 90th percentile of the uncertainty analysis

based on bootstrap calculation of the mean.

FIGURE 4

(A) Average low flow duration, (B) number of events and (C) average intensity based on di�erent months in which low flow periods started for PD, 2C

and 3C scenario (based on national and model average). Low flow events are defined by the 20th percentile threshold, lasting a minimum of 7 days.

The number of events is total over the full ensemble in a scenario. Average intensity is normalized by the annual mean discharge of the stations

included. Whiskers represent 10th and 90th percentile.

The southern region, which is predominantly fed by the Meuse

discharge, also shows an increase in low flow frequency during the

summer months. However, the maximum percentages observed

are lower (∼41% in Sep, 3C) and furthermore, a relatively high

percentage of ∼15% is already observed in Jan-Mar, which might

be due to the Meuse being a rain water system where the snow melt

dynamic signal is missing.

The differences observed between the regions and the

main Rhine discharge can furthermore be seen in more detail

in Supplementary Figure S3, where the regional difference are

presented relative to the “base” station at Lobith (Rhine

observations which were used as input variable in previous studies).

If the focus is shifted toward the high flow percentages in

Figure 5, similar observations regarding shifts and differences

between the regions can be made as for low flow periods, as well

as the underlying seasonality which corresponded to the national

average in Figure 3. The central, eastern, northern and western

region indicate a stronger and earlier increase in high flows during

the first few months of the year with Mar and Apr showing the

highest percentages (53%, 58%, 50%, and 48% for 3C). For the

northern and eastern regions high flow percentages are lowest

during summer months, while in other regions they vary around

∼3%. The southern region shows a less pronounced seasonal cycle

than the other regions, with a lowermaximumhigh flow percentage

around∼43% for both warming scenarios in Mar.

In general, the largest increase in frequencies with warming

are observed for the low flows, while the changes in high flow

frequency are less pronounced and much closer to the PD for
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FIGURE 5

Seasonal cycle of percentage of low and high flows under di�erent scenarios PD, 2C and 3C, averaged over di�erent regions (indicated by the group

of dots with same color) based on the LSTM model results. Regions are defined into northern (dark green), eastern (light green), central (gray),

southern (light pink) region and western (purple) region. Major rivers are presented by blue lines, while the dark gray area represents the IJsselmeer

lake. Low flows are highlighted in yellow (PD), orange (2C), and red (3C), high flows in light blue (PD), blue (2C), and dark blue (3C).

most months. More details regarding the differences of the regions

compared to the “base” station Lobith can furthermore be seen in

Supplementary Figure S3.

The results shown in Figure 5 and supported by

Supplementary Figure S3 showed that we are able to capture

regional differences with locally informed models. These regional

differences can also be seen for the other ML models (see

Supplementary material including Supplementary Figures S4–S7).

3.4. Spatial characteristics-locally

Using the ML model framework based on local models allowed

to assess the influence of climate change on extreme events also on

a local scale, next to the national and regional already previously

elaborated. Figure 6 shows the result for high and low flow

frequency for the different scenarios (same approach as in previous

Figures 3, 5) for a selection of stations throughout the Netherlands.

Some stations are located along the main river network, others at

smaller streams (not drawn on the map).

Looking at the station represented by the bottom right, enlarged

radar plot as an explanatory example, the percentages for both

high and low flows are represented by the shaded shape for each

scenario in corresponding colors throughout the year (PD in gray,

2C orange/light blue, 3C red/blue).

For both changes in low and high flows we observe similar

trends as on the national and regional scale, albeit with more local

details. For the example station at Lobith (bottom right) we see that

the frequency of low flow events for all scenarios increases from

Jul-Sep, while high flows increased in the period Jan to Apr.

Other stations highlighted in Figure 6 show similar patterns

as the example station in terms of the shape of the different
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FIGURE 6

Seasonal patterns in percentage of low and high flows for di�erent stations and scenarios PD, 2C, and 3C, based on results from LSTM model. PD

values for both high and low flows are represented by the gray shaded areas. Low flows for 2C are highlighted in orange and for 3C in red. High flows

for 2C are shown in blue and dark blue (3C).

scenario results. Some station vary in the shift of these shapes

(most northern ones), indicating that the high and low flow

periods are starting earlier in the year, or also in terms of

frequency. For example, stations located in the southern region

show lower frequencies in terms of maximum high flows and

furthermore the differences between the scenarios are smaller.

Minor differences between scenarios but larger deviations in terms

of frequency compared to other stations are also observed (top

two left stations). Most of these observations regarding shifts

and differences in frequencies were already found in the regional

assessment, however more detailed patterns and exceptions were

now able to be explored.

The shifts observed for the different stations are also observed

in the mean, the 20th and 80th (Supplementary Figure S8), which

indicates that the trends and patterns seen for the different

scenarios are due to a change in the mean climate and its

variability. Shifts in the mean range between ± 10% for most

stations compared to the PD scenario, with the largest shifts seen

for stations with low mean annual discharge. Shifts in low flow

extremes range up to 20%, while high flow events show a smaller
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range (± 10%). This indicates that the changes in climate variability

will have the most significant impact on low and high flows in

the Netherlands.

Overall, for both high and low flows the differences in shifts

for the different stations correspond well to the shifts found in the

respective regions the station is located in. However, analysing the

results of the stations also showed that frequencies and changes

in frequencies can be locally slightly different from the regional

average. This shows that having a locally trained ML framework

is useful for bringing large scale information, such as the large

climate ensembles, to local scale and therefore making it possible

to assess future changes under changing climate and the adaptation

requirements more location specific.

4. Discussion

This study combined a locally trained ML model framework

with global LE with the goal to see if and how they can be combined

to assess extreme events under different warming levels (PD, 2C,

and 3C) to potentially create valuable local estimates of climate

change impacts from large-scale inputs.

Due the setup of the ML model framework including a simple,

exchangeable input dataset, the incorporation of the LE was

straightforward, similar to the previous study using the samemodel

framework for seasonal forecasting by incorporating seasonal

reforecasting data as input (Hauswirth et al., 2022). The locally

trained models inherit information on the discharge characteristics

for each station, translating large scale information to regional and

even scales which are deemed relevant for adaptation measures.

Especially in terms of climate change assessment, this can be of

big interest as most of these assessments are based on large scale

trends. The LE used in this study create a new opportunity to assess

climate change and extreme events for different warming scenarios,

compared to the more traditional approach including stochastic or

GCM+GHM models where only one non-stationary timeseries is

given. The ensemble approach provides orders of magnitude more

realizations of extreme events, compared to more classic CMIP6

type transient climate simulations (van der Wiel et al., 2019b). At

the same time, LE simulations allow to identify the hydrological

impact of specific warming levels. LE have already proven to be

relevant for impact assessment in for example energy production or

agriculture (van der Wiel et al., 2019a; Goulart et al., 2021). In this

study we showed that by combining LE with a local ML modeling

framework enables us to project local hydrological effects of climate

change which gives water management a more detailed outlook on

potential direct impacts on flood risk and available water resources

in the future.

To make extrapolation in a ML model framework possible,

a new post-processing approach was introduced. The suggested

non parametric post-processing step in this study underlies the

assumption that the tails of the distribution (representing extreme

events) of the historical observations for each station remain the

same for future events. This approach is relatively simple, can be

implemented readily without needing high computational demand

and brings the added benefit of being location specific and therefore

creating the opportunity to scale down possible effects of climate

change. However, it is dependent on having a long observational

record for locations of interest. Due to extreme events having large

return times and observational records not always being available

or not long enough (in our case 30 years) this of course can lead

to the post-processing step not correcting for the full scale of the

extreme events in the LE. Furthermore, the form of the tails of

the probability distribution of future events might be changing and

therefore our assumption might not hold. However, this simple

post-processing step is a first step to a fully data-based approach

to simulating future extreme events. Assuming that the form of

the tails above and below the training data values remains the

same has its limitations, but is not better or worse than assuming

some parametric form for extrapolation. Also using the statistical

information of modeled data from physically based models has

its limitations as they inherently also make assumptions and as

such are also biased in their reproduction of the tail (and with

a significantly higher computation demand). Using ML models

trained on historic local observations gave us models that are

closer to the original observations, compared to having models

trained and tested on data obtained from future projections with

physically-deterministic model forced with the LE. It remains to be

seen if a physically based model is closer to the unknown future

than our ML method with post-processing. The proof of concept

showed that the approach taken in this work provided a reasonable

solution for the inherit extrapolation problem in ML based future

projections. Even though the most extreme events might not be

able to be reconstructed with this method, the general trend and

patterns, especially for long term events such as drought, can still be

simulated and therefore gives a base for climate change assessments

on a local scale.

The trends observed in this study are in line with earlier work

projecting changes in hydrological extremes for the river Rhine.

However, the approach used here allows for further downscaling of

the results, bringing the relevant information and insights to amore

local level and making them more applicable for decision makers.

This can be of interest to local authorities who are in need of locally

specific information, as studies regarding climate change are often

on a larger scale. Changes observed between the different scenarios

were likely due to a change in climate variability. The discharge

simulation (based on LE and PCRGLOBWB) incorporated in the

input data for the ML framework did include a shift in the extreme

events and the mean, which was also present in the input data after

bias correction. We observed that this information was also found

in simulated discharge for the different stations. While the shifts in

the mean for the stations were between± 10%, shifts in the extreme

events (especially low flow periods) could reach up to 20%. This is

in line with previous assessments at the national scale suggesting

that climate change will be more prominently felt in shifts in the

extremes than in the average climate.

5. Conclusion

In this study, large climate ensembles (LE) and local,

observation based hydrological machine learning (ML) models

were combined to assess extreme events under different warming

scenarios [present-day (PD), 2◦C (2C), and 3◦C (3C) warmer

climate]. The incorporation of LE, which in our case consisted

of 2000 years of global data for every scenario, provided the
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opportunity to be able to empirically assess extreme events due to

the large number of realizations of future weather. Combining this

information with local ML models allowed for detailed and local,

regional and national estimates of future hydrological extremes,

therewith creating locally specific information that is of interest to

local water managers.

A new post-processing approach based on historical

information was introduced to enable the projections

of extreme values outside the observed data range and

incorporate the LE for local assessments of extreme events.

The application of the post-processing step was tested on historical

simulations first before being implemented for the different

warming scenarios.

Extreme event analysis at the national scale in terms of

discharge low and high flows for the different climate change

scenarios and spatial scale showed a clear seasonal cycle with

increased low flow periods from summer till the end of autumn

(∼45% average for August–October) and increased high flow

periods for early spring (∼43% average for February–April).

Highest frequencies of low flow periods were reached with the

3C climate scenario showing the highest percentages for both

type of events (53 and 50% respectively). Regional differences

were seen in terms of shifts (low flows occurring earlier in the

year) and ranges (higher/lower percentages). These trends, albeit

with slightly different values, were further detangled into location

specific results.

Differences in extremes between the different scenarios were

predominantly due to a change in climate variability, which

was seen by analysing the mean, the 20th and 80th for

different discharge stations. Largest shifts regarding the mean

were observed for stations with low annual mean discharge,

while shifts in extreme events such as low flow were seen

for all.

In this study we show that by combining the wealth of

information from large climate ensembles, local characteristics

captured locally with observation-based ML models and a

suitable post-processing method for tail extrapolation allows

the projection of future extremes under climate change. The

local modeling framework thus provides important information

for local to regional water management to be used in long

term planning.

Data availability statement

The raw data supporting the conclusions of this

article will be made available by the authors, without

undue reservation.

Author contributions

Conceptualization of this research has been done by SH, NW,

MB, KvdW, and VB. Climate data acquisition was done by KvdW.

Hydrological data acquisition was done by SH. Data analysis was

performed by SH, with input from NW and MB. Writing was done

by SH with feedback by NW, MB, KvdW, and VB. All authors

contributed to the article and approved the submitted version.

Funding

SH acknowledges funding from the Corporate Innovation

Program and the Department of Water, Transport and

Environment at the Dutch National Water Authority,

Rijkswaterstaat. NW acknowledges funding from NWO

016.Veni.181.049.

Acknowledgments

Figure maps were created using the python package Cartopy

(Elson et al., 2022), which uses basemap data from Made

with Natural Earth and © OpenStreetMap contributors 2022.

Distributed under the Open Data Commons Open Database

License (ODbL) v1.0.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frwa.2023.

1108108/full#supplementary-material

References

Bardsley, W., Vetrova, V., and Liu, S. (2015). Toward creating simpler hydrological
models: a LASSO subset selection approach. Environ. Model. Software 72, 33–43.
doi: 10.1016/j.envsoft.2015.06.008

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.
doi: 10.1023/A:1010933404324

de Bruin, H. A. R., and Lablans, W. N. (1998). Reference crop evapotranspiration
determined with a modified Makkink equation. Hydrol. Processes 12, 1053–1062.
doi: 10.1002/(SICI)1099-1085(19980615)12:7andlt;1053::AID-HYP639andgt;3.0.CO;2-E

Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N.,
et al. (2020). Insights from Earth system model initial-condition large ensembles

Frontiers inWater 12 frontiersin.org

https://doi.org/10.3389/frwa.2023.1108108
https://www.frontiersin.org/articles/10.3389/frwa.2023.1108108/full#supplementary-material
https://doi.org/10.1016/j.envsoft.2015.06.008
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1002/(SICI)1099-1085(19980615)12:7andlt;1053::AID-HYP639andgt;3.0.CO;2-E
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Hauswirth et al. 10.3389/frwa.2023.1108108

and future prospects. Nat. Clim. Chang 10, 277–286. doi: 10.1038/s41558-020-
0731-2

Elson, P., de Andrade, E. S., Lucas, G., May, R., Hattersley, R., Campbell, E., et al.
(2022). SciTools/cartopy: v0.20.2 (v0.20.2). Zenodo. doi: 10.5281/zenodo.6775197

Felsche, E., and Ludwig, R. (2021). Applying machine learning for drought
prediction in a perfect model framework using data from a large ensemble
of climate simulations. Natural Hazards Earth Syst. Sci. 21, 3679–3691.
doi: 10.5194/nhess-21-3679-2021

Fowler, H. J., Blenkinsop, S., and Tebaldi, C. (2007). Linking climate change
modelling to impacts studies: recent advances in downscaling techniques for
hydrological modelling. Int. J. Climatol. 27, 1547–1578. doi: 10.1002/joc.1556

Giorgi, F. (2019). Thirty years of regional climate modeling: where are we
and where are we going next? J. Geophys. Res. Atmosph. 124, 5696–5723.
doi: 10.1029/2018JD030094

Goulart, H. M. D., van der Wiel, K., Folberth, C., Balkovic, J., and van den Hurk, B.
(2021). Storylines of weather-induced crop failure events under climate change. Earth
Syst. Dyn. 12, 1503–1527. doi: 10.5194/esd-12-1503-2021

Graham, L. P., Andréasson, J., and Carlsson, B. (2007). Assessing climate change
impacts on hydrology from an ensemble of regional climate models, model scales and
linking methods - a case study on the Lule River basin. Clim. Change 81, 293–307.
doi: 10.1007/s10584-006-9215-2

Hauswirth, S. M., Bierkens, M. F., Beijk, V., and Wanders, N. (2021). The potential
of data driven approaches for quantifying hydrological extremes. Adv. Water Resour.
155, 104017. doi: 10.1016/j.advwatres.2021.104017

Hauswirth, S. M., Bierkens, M. F. P., Beijk, V., and Wanders, N. (2022). The
suitability of a hybrid framework including data driven approaches for hydrological
forecasting. Hydrol. Earth Syst. Sci. Discuss. 27, 501–517. doi: 10.5194/hess-2022-89

Hazeleger, W., Wang, X., Severijns, C., Ştefănescu, S., Bintanja, R., Sterl, A., et
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