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Abstract
The issue of the added value (AV) of high resolution regional climate models is complex and still strongly debated. Here, we 
approach AV in a perfect model framework within a 16-member single model initial condition ensemble with the regional 
climate model RACMO2 embedded in the global climate model EC-Earth2.3. In addition, we also used an ensemble pro-
duced by a pseudo global warming (PGW) approach. Results for winter temperature and precipitation are investigated from 
two different perspectives: (1) a signal-to-noise perspective analysing the systematic response to changing emission forcings 
versus internal climate variability, and (2) a prediction perspective aimed at predicting a 30-year future climate state. System-
atic changes in winter temperature and precipitation contain fine-scale response patterns, but in particular for precipitation 
these patterns are small compared to internal variability. Therefore, single members of the ensemble provide only limited 
information on these systematic patterns. However, they can be estimated more reliably from PGW members because of the 
stronger constraints on internal variability. From the prediction perspective, we analysed AV of fine-scale information by 
comparing three prediction pairs. This analysis shows that there is AV in the fine-scale information for temperature, yet for 
precipitation adding fine-scale changes generally deteriorates the predictions. Using only the large-scale change (without fine 
scales) from a single ensemble member as a delta change on top of the present-day climate state, already provides a robust 
estimate of the future climate state and therefore can be used as a simple benchmark to measure added value.

Keywords  Regional climate change · Added value · Predictability · Internal variability

1  Introduction

Knowing—predicting or projecting—the future climate with 
all its fine-scale details and associated uncertainties, can be 
considered as the Holy Grail in climate change adaptation 
(Giorgi 2019; Hewitt et al. 2021). This quest underlies large 
international efforts to produce high resolution climate 
information such as CORDEX (Giorgi et al. 2009; Jacob 
et al. 2020). With the application of high-resolution regional 
climate models, the question concerning the added value 
(AV) in comparison with lower resolution global climate 
models is often posed, in particular considering the high 
computational resources needed to perform such regional 
downscaling experiments.

The topic of AV of high resolution regional modelling 
systems is complex and strongly debated in literature (Feser 
et al. 2011; Di Luca et al. 2015; Giorgi 2019; Lloyd et al. 
2021). AV covers potential gains on larger scales resulting 
from better resolved physical processes as well as the value 
of the added fine-scale information. Pragmatic considera-
tions such as the availability of more output in regional mod-
elling systems are important as well in user context.

Here, we only consider the aspect of the added fine-scale 
spatial patterns, in our case mostly connected to the orogra-
phy, land–sea contrasts and high resolution land-use maps. 
We note that fine-scale information can also be related to 
small-scale atmospheric phenomena, such as convective 
showers, which are not necessarily geographically specific. 
We focussed here on changes in seasonal means, whereas 
AV may also be expected for extremes (Ciarlo et al. 2021).

From a physical point of view, regional climate mod-
els clearly resolve many regional processes better, such as 
local interactions with orography (Torma et al. 2015; Giorgi 
et al. 2016) or small-scale circulations as sea breezes, frontal 
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systems and mesoscale convective systems. This generally 
leads to a better reproduction of present-day observed cli-
mate statistics than in coarse resolution global climate mod-
els (Feser et al. 2011; Rummukainen 2016; Gutowski et al. 
2020; Prein et al. 2021).

Yet, AV in the sense of producing more reliable climate 
change information and/or better projections of the future 
climate is not so obvious. Here, we use reliable as trustwor-
thy, but later in the paper we use reliable in a measurable 
statistical sense within a perfect model approach. One could 
argue that the fact that local processes are better resolved in 
high resolution models likely leads to more reliable projec-
tions of future changes. Not disputing this view, one may 
also question whether the improved representations of physi-
cal processes (and resulting better present-day climatology) 
is a sufficient justification to spend the limited computational 
resources on downscaling experiments instead of producing 
larger ensembles of global climate models simulations or on 
improving those models (Nishant and Sherwood 2021). We 
mention two primary reasons for this point of view. First, a 
regional model inherits most of the large-scale atmospheric 
flow features from the global driving model (Ulden et al. 
2007) and the reliability of a high-resolution projection is 
therefore limited by the reliability of the driving boundary 
conditions from the global model. Second, at higher resolu-
tion the smaller scales become more active owing to explic-
itly resolved instabilities at the smaller scales, leading to 
large small-scale variability (Fatichi et al. 2016; Aalbers 
et al. 2018). By using a perfect model approach where we 
know the future truth, we here aim to learn on AV in a cli-
mate change context, in particular focussing on the change 
signal and variability at fine scales.

Natural, internal climate variations due to chaotic dynam-
ics (Selten and Branstator 2004) are inherently unpredict-
able on decadal and longer timescale and are a source of 
irreducible uncertainty (Deser et al. 2010, 2020; Fischer 
et al. 2014; Fatichi et al. 2016; DelSole and Tippett 2018; 
Lehner et al. 2020). In global climate modelling a consider-
able number of so-called single model initial-condition large 
ensembles (SMILEs) exist, projections with the same model 
that only differ by a random perturbation in the initial condi-
tion (Deser et al. 2020; Maher et al. 2021). SMILEs can be 
used to study the internal variations of the climate system 
in relation to the systematic greenhouse gas (and aerosol) 
induced forced climate change signal (Thompson et al. 2015; 
Lehner et al. 2020; Maher et al. 2021), but also changes in 
rare extremes or variability (Wood et al. 2021; van der Wiel 
et al. 2021). However, such SMILEs are still quite rare in 
regional climate modelling mostly due to the high computa-
tional expenses of regional models and the unavailability of 
GCM boundary conditions (Leduc et al. 2019; von Trentini 
et al. 2019, 2020; Maher et al. 2021).

We used a regional SMILE with the regional climate 
model RACMO2 embedded in the global Earth-System-
Model EC-Earth2.3 (Lenderink et al. 2014; Aalbers et al. 
2018). Using this SMILE, and employing a perfect model 
approach, we aim to answer the following questions:

•	 concerning signal-to-noise: Are there systematic fine-
scale change patterns, and how do these compare to the 
internal variability at large and fine scales? Do single 
ensemble members provide useful information on the 
systematic fine-scale changes?

•	 concerning predictability: Do predictions of a future 
30-year climate, called a climate state, improve (within 
the perfect model approach) by using fine-scale change 
information in comparison to using only the large-scale 
information?

As part of coping with the signal-to-noise problem, we 
also present results using a pseudo global warming (PGW) 
approach (Schär et al. 1996; Brogli et al. 2019a, b). In this 
approach, the weather in the control period is repeated under 
warmer/moister conditions, using perturbations in tem-
perature/humidity and large-scale flow derived from EC-
EARTH. This approach filters out a considerable part of the 
climate variations related to variability of the large-scale 
atmospheric flow, and also other sources of internal vari-
ability like sea surface temperatures and sea-ice cover (de 
Vries et al. 2022). By filtering out these variations we expect 
to be able to detect the small-scale change features related to 
topography and land–sea contrast with less computational 
efforts; for instance by running only one ensemble member 
instead of having to produce a large ensemble.

In the first part of the paper, we take a signal-to-noise 
standpoint, and investigate the internal variability and forced 
signal. A spatial filtering technique (Feser 2006) is used to 
separate out large-scale and fine-scale features. In the sec-
ond part of the paper, we approach the problem in a predic-
tion framework setting. A perfect model approach is used 
to evaluate how well a 30-year future climate state can be 
predicted, taking one ensemble member as the truth, and 
trying to predict the future state using information from the 
other members. Various options to produce high-resolution 
future states are explored to investigate the potential of add-
ing value from high-resolution modelling systems.

2 � Models and methods

2.1 � Simulations

We used a 16 member initial condition ensemble with the 
regional model RACMO2, embedded in the global climate 
model (GCM) EC-Earth2.3 forced by RCP8.5 emissions 
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(see Lenderink et al. 2014; Aalbers et al. 2018). Only the 
EC-Earth2.3 simulation is perturbed in 1850, providing 16 
member ensemble up to 2100, and these are used to force 
RACMO2 at its lateral boundaries for the period 1950 to 
2100. For the analysis, we considered the following two 
periods, the control present-day climate period 1991–2020 
and the future period 2071–2100. The grid spacing is 12 km, 
and the model domain covers the central western part of 
Europe.

For the future period we also analysed an ensemble of 16 
RACMO2 simulations produced by a pseudo-global warm-
ing (PGW) approach. The ensemble mean changes between 
the future and present-day period in temperature, relative 
humidity, winds and pressure are first computed from EC-
Earth2.3. Then for each member of the ensemble, these 
changes are added to the RACMO2 lateral boundary condi-
tions from the control period, thus producing a set of 16 
RACMO2 boundary conditions for the future period. Also, 
sea surface temperatures are adjusted, as well as the green-
house gas and aerosol forcing. Soil moisture adjustments are 
only imposed on the initial state of the PGW-integrations 
and are derived from the standard ensemble.

The original GCM driven ensemble is denoted as the 
standard (STD) ensemble, while the PGW driven runs are 
denoted as the PGW ensemble. Note that for the control 
period, the PGW and standard ensemble are the same. We 
only consider here the winter period.

2.2 � Analysis of forced response and natural 
variability

We start by introducing some terminology used in this paper. 
A realization of a 30-year climate—a 30-year time period 
from a member of the ensemble—is called a climate state. 
A climate state deviates from the climatology of the model 
because of random internal variability. The latter climatol-
ogy is defined here as the mean over the ensemble members 
for the period considered. We note, however, that with 16 
members there still is an internal variability component left 
in this mean, for instance due to long-term variability such 
as in the ocean. We refer to the forced response as the aver-
age change between the future and present period over the 
16 ensemble members—forced response to underline that 
this change is predominantly due to the external forcing 
(greenhouse gas and aerosol concentration). For the differ-
ence between a control and future climate state, we use the 
term change; it consists of the forced response modified by 
internal variability. As a measure of internal variability we 
use the standard deviation of the change across the ensemble 
members (range between plus and minus standard devia-
tion around the ensemble mean, containing ~ 10 of the 16 
ensemble members).

For precipitation, changes are fractional changes with 
respect to the reference period. Relative changes avoid 
unphysical negative precipitation amounts when applied in 
the prediction framework in the next section. Also, for win-
ter precipitation as studied here the distribution of relative 
changes has less outlier points (a more even distribution) as 
compared to absolute changes (with a small number of grid 
points with high change values). However, we acknowledge 
that relative changes could become large for areas with low 
precipitation amounts, such as for example occurring in 
southern Europe for summer. For temperature absolute dif-
ferences between control and future period are used.

We used a Gaussian spatial filter to determine large-scale 
patterns and fine-scale pattern in the response. The filter is 
given by:

with σ the standard deviation, which is taken as 10 grid 
points. Applying this filter only retains the large scales, 
typically beyond 200 km (2 times the filter width; see e.g. 
Figs. 1, 2, 3, 4), which is representative for a present-day 
coarse resolution GCM. However, results are not very sensi-
tive to the choice of filter length. Filtering is done using “R” 
routine “kernsm” from package “aws”.

The unfiltered field for the control and future period are 
denoted by a subscript “full”, while the smoothed, filtered 
fields are marked with “filt”. The filtered fields are derived 
by first filtering the control C as well as the future F period 
to mimic the coarse resolution information of a GCM, and 
then determining the fractional change. The fractional 
change R of member j is now given by:

and the residual fine-scale change

We note that with this definition of the fine-scale change 
pattern we assess added value since it compares the relative 
changes from the full resolution with those derived from 
only coarse resolution. Alternatively, we could also have 
computed the filtered response R

f ilt,j by performing filter-
ing on the response pattern directly instead of the control 
and future period separately, which can be interpreted as the 
fine-scale response contained in the full resolution response. 
In practise, however, these definitions are very similar, and 
for absolute changes used for temperature they are even 
identical.

G(x, y) =
1

2��2
e

−x2−y2

2�2

R
full,j =

[

Ffull,j − Cfull,j

Cfull,j

]

R
f ilt,j =

[

Ffilt,j − Cfilt,j

Cfilt,j

]

R
f ine,j = R

full,j − R
f ilt,j.
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Fig. 1   Change in mean winter precipitation for the STD ensemble. 
Upper panels: forced response in precipitation (upper) with from left 
to right, a full field, b filtered field and c fine-scale field. Lower pan-

els, absolute value of fine-scale forced response (d), in comparison 
with internal variability in full, filtered and fine-scale field (e, f, g)
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Fig. 2   Same as Fig. 1, but now for mean winter temperature change 
from the STD ensemble. We note that the light grey area in the upper 
left/middle top panels denote a temperature rise approximately equal 

to the global temperature rise of 3.1 °C, and that the color bar for the 
anomalies on right top figure is shifted by 3.1°
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Fig. 3   As Fig. 1, but now for the PGW ensemble
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Fig. 4   As Fig. 2 but now for the PGW ensemble
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2.3 � Analysis of conditional predictability 
of a climate state

Predictions are studied within a perfect model approach. 
As such they are by construction conditional on the model, 
which is assumed to be perfect, and the chosen emission 
scenario. Usually, in the context of long-term climate change 
the term projections is used for model simulations, high-
lighting that these simulations are in fact highly conditional 
and should not be interpreted as a prediction. But here we 
used the word prediction to emphasize that within our per-
fect model approach we can compare the predictions with 
an actual truth.

In our approach one member i is taken as the truth, 
assuming we know its present-day climate state and aim-
ing to predict its future climate state. We use data of the 
other members j (with j ≠ i, a non-truth member) to predict 
the future state of i. Cycling through i, this gives a matrix 
of predictions; for each i (with i = 1…16) 15 predictions 
based on the remaining members j are produced, in total 
240 predictions.

We note that for the sake of simplicity in the following 
equations, “i” in the left-hand side refers to the member to be 
predicted (and not a dependency), whereas “i” and “j” on the 
right-hand side denote the members that are used to predict 
(the dependencies). Further we note that three predictions 
of the future state do not depend on “i” (Eqs. 3, 4 and 7) and 
one not on “j” (Eq. 6). A more rigorous mathematical nota-
tion can be found in the Supplement.

The first two prediction methods—hereafter also a predic-
tion pair—are simple delta change techniques (Lenderink 
et al. 2007),

The first prediction uses the change information derived 
from member j, and “adds” this change to the control climate 
state of i (which is assumed to be known) to predict its future 
state. The second prediction applies the same method, but 
only uses the large-scale pattern of change. Thus, by com-
paring the predictions based on Eq. 1 with those of Eq. 2, 
the added value of fine-scale information can be assessed. 
For completeness, we note that these equations are for rela-
tive changes; for absolute changes they read more simply as:

The predictions above are based on the estimate of 
the control climate from a single realization only, which 
may deviate from the model climatology due to internal 

(1)F
pred Full,i = C

full,i

[

1 + R
full,j

]

(2)F
pred Filt,i = C

full,i

[

1 + R
f ilt,j

]

.

Fpred Full,i = Cfull,i + R
full,j; R

full,j = Ffull,j − Cfull,j

Fpred Filt,i = Cfull,i + R
f ilt,j; R

f ilt,j = Ffilt,j − Cfilt,j.

variability. In order to assess the potential gain in prediction 
skill by better knowledge of the present-day climatology, we 
evaluate the following prediction pair:

where the “m” denotes the 16-member ensemble control 
mean (“Cmean” on the left). We note that in practice we 
do not know how the 30-year control climate state deviates 
from its real climatology, but by comparing this approach 
with the previous prediction set (Eqs. 1, 2) we can estimate 
how uncertainty in the present-day observed climate state 
affects future predictions.

In the next approach we assume Perfect knowledge of 
the Large-Scale change (PLS). In that case the two predic-
tions are:

This pair assesses the hypothetical case in which the 
GCM is perfectly able to predict large-scale changes, and 
raises the question whether improvement in prediction skill 
can be expected by adding imperfect knowledge from mem-
ber j on the fine-scale change. We note that this set, and 
in particular Eq. 6, is also relevant in a matrix filling con-
text (Christensen and Kjellström 2021; see Sect. 4). Also 
note that Eq. 5 is similar to Eq. 1, but now with the filtered 
response field from member j, replaced by the true filtered 
response field from member i.

Finally, we note that the first prediction in Eq. 1 can be 
written differently:

So, this prediction can be written as a direct model pre-
diction of the future state F

full,j , modified by a correction 
term given by the fractional difference between the control 
periods of the two members i and j. This correction term is 
essentially measuring the internal climate noise component 
and how much members i and j deviate by chance. This term 
has the same form as a simple “bias” correction, assum-
ing that the bias from the control period carries over to the 
future period.

Given that in our approach, the model is assumed to be 
perfect and therefore F

full,j can be considered as an unbiased 
estimate of F

full,i , we also considered the following direct 
prediction

(3)F
pred Full Cmean,i = C

full,m

[

1 + R
full,j

]

(4)F
pred Filt Cmean,i = C

full,m

[

1 + R
f ilt,j

]

(5)F
pred Full PLS,i = C

full,i

[

1 + R
f ilt,i + R

f ine,j

]

(6)F
pred Filt PLS,i = C

full,i

[

1 + R
f ilt,i

]

.

F
pred Full,i = C

full,i

[

1 + R
full,j

]

= F
full,j

C
full,i

C
full,j

.
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A simple analysis of the error characteristics of differ-
ent predictions is given in the “Appendix”, and discussed 
below where appropriate. The “Appendix” also shows these 
predictions in a table for quick reference in conjunction with 
the figures.

The skill of a prediction is measured by two different 
indices, the spatial correlation between predicted F

pred,i  
and actual future climate state Fi , and a mean absolute error 
which is defined by:

where |..| is the absolute value and < .. > the spatial mean 
over the analysis domain. We note that since the predictions 
depend on j, these errors also depend on j, thus providing 
a matrix i, j of errors. The exception is F

pred Filt PLS,i (Eq. 6), 
which does not depend on j, and for which we used the same 
error for all j.

3 � Results

3.1 � Forced response and natural variability

The forced response in winter mean precipitation change 
shows a general pattern of more precipitation across the 
European continent (Fig. 1a). Most of the response is large 
scale (Fig. 1b). Yet, a substantial fine-scale response pat-
tern is present primarily related to the orography; in west-
ern Scandinavia with a weaker increase near the coast and 
stronger behind the mountain range, in the Alpine region 
with weaker response over the higher orography and stronger 
response north and south. Also, the lower mountain ranges 
can be found back as weak fine-scale patterns in the forced 
precipitation response (Fig. 1c).

The winter precipitation climate is highly variable and 
characterized by large internal variability unrelated to cli-
mate change (see also Supplement showing the anomalies in 
response in the first 4 ensemble members). To quantify the 
internal variability, we use two times the ensemble standard 
deviation (~ 68% range) of the climate change signal from 
the 16 members. This is done for the full field, the filtered 
field, as well as the residual fine-scale field (Fig. 1e, f, g). 
Most of the natural variability is clearly in the large-scale 
pattern, yet in the alpine region large-scale and fine-scale 
contributions are of the same order. Generally, the fine-scale 
forced signal is substantially smaller in amplitude than the 

(7)F
predDirect,i = F

full,j.

Ei =

⟨

|

|

|

|

|

Fpred,i

Fi

− 1
|

|

|

|

|

⟩

for precipitation (in fraction), and

Ei =

⟨

|

|

|

Fpred,i − Fi
|

|

|

⟩

for temperature (in degrees ◦C),

internal variability component, signifying low signal-to-
noise values of fine-scale response patterns.

For temperature, the situation is more favourable in a sig-
nal-to-noise sense (Fig. 2). The fine-scale forced patterns are 
still smaller than the overall internal variability. However, 
the fine-scale forced signal is at least larger than the fine-
scale internal variability in topographic areas, like the Alps.

Spatial patterns of forced response and internal variability 
produced by the PGW approach are shown in Figs. 3 and 
4. For precipitation this ensemble produces slightly higher 
mean changes in precipitation (Fig. 3a) in comparison to 
the STD ensemble, much better signal-to-noise (Fig. 5), but 
overall the change patterns are quite similar (pattern correla-
tion of 0.94 between full forced response in PGW and STD 
ensemble, and 0.83 for the fine-scale pattern only; see also 
Fig. 6a, b). As expected internal variability is much smaller 
in the PGW ensemble, both for large as well as fine scales 
(Fig. 3e, f, g). Apparently, constraining the large-scale circu-
lation in the PGW approach is sufficient to also substantially 
reduce the internal variability at fine scales. This holds to a 
lesser extent for temperature, where the PGW approach still 
contains some internal variability, though reduced substan-
tially compared to the standard ensemble (Fig. 4). We also 
note that for temperature the PGW ensemble underestimates 
the overall warming at larger scales, yet gives reliable esti-
mates of the fine-scale component (pattern correlation of 
fine-scale pattern of 0.99; see also Fig. 7b).

To proceed, we discus signal-to-noise—defined as the 
ratio between the forced change signal and two times the 
inter-member standard deviation—for the fine-scale change 
pattern and the smoothed change pattern. For precipitation 
signal-to-noise ratios are clearly much higher in the PGW 
ensemble as compared to the STD ensemble, both for the 
large and fine scale changes (Fig. 5). The high signal-to-
noise for the fine-scale pattern in the PGW experiment is 
even true when comparing to the standard deviation from 
the full response pattern (middle panels). The STD ensemble 
show (very) low signal-to-noise ratios, in particular for the 
fine scale pattern. For temperature (see supplement) differ-
ences are not as pronounced, but again the PGW experiment 
is characterized by better signal-to-noise ratios.

One may ask how well the systematic response patterns 
can be approximated by a single member of the ensemble. 
We use a Taylor diagram (Taylor 2001) to show correla-
tion, root mean square difference, and the standard devia-
tion of the forced response pattern and the change in single 
members. Typically, for mean winter precipitation indi-
vidual STD ensemble members have a pattern correlation 
of 0.7–0.85, and errors of 0.04–0.1 (root mean square dif-
ference of the fractional precipitation change; Fig. 6a). 
Focusing on the fine-scale pattern, spatial correlation fur-
ther deteriorates, in four members even below 0.5 (Fig. 6b). 
The PGW ensemble clearly shows much more consistent 



2570	 G. Lenderink et al.

1 3

results, with a spatial correlation of more than 0.9 for the 
full response field and 0.75–0.8 for the fine-scale response 
and smaller errors (Fig. 6a, b). All individual PGW mem-
bers are (much) closer to the full as well as the fine-scale 
forced change patterns than any of the STD members. For 
temperature, differences between the PGW approach and the 
STD ensemble are less clear (Fig. 7). Spatial correlations are 
comparable or slightly higher in the PGW ensemble and the 
errors are generally smaller in the PGW ensemble, with no 
outlier simulations like in the STD ensemble. As expected, 
in this case the PGW ensemble is (much) less affected by 
internal variability.

By comparing the full and the filtered precipitation 
change patterns projected by the individual members to the 
full forced response, a measure of added value of the high 
resolution can be determined (Fig. 6d). In case of the STD 
ensemble, neither the correlation nor the standard error 
improve going from the filtered to the full change field. 
Although there is a systematic fine-scale forced response 
pattern, it is clear that in the full change patterns of the indi-
vidual members the forced response pattern is not emerging 
from the noise. This situation is better for the PGW runs 

showing small improvements (mostly in correlation) when 
adding the fine-scale patterns (Fig. 6e) and even much bet-
ter comparing the PGW members to the PGW forced signal 
(Fig. 6f).

For mean winter temperature change, added value of fine-
scale information is present (Fig. 7d, e). In general, changes 
including the fine-scale patterns derived from single mem-
bers provide a better predictor of the systematic response 
pattern as compared to the large-scale changes only. Also, 
most individual members perform already better than the 
ensemble mean large-scale change (Fig. 7d, red dots com-
pare to light blue dot) showing that even with uncertain 
large-scale changes, in this case downscaling already adds 
value to the simulations.

Summarizing, both for mean winter temperature and 
precipitation, fine-scale patterns in the forced signal exists, 
signifying added value in the forced signal resulting from 
high resolution modelling. Yet, a robust estimate of this fine-
scale forced signal is not always obtained from single model 
simulations, in particular for the more variable precipitation 
changes.
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Fig. 5   Signal-to-noise (S2N, mean forced change pattern divided by 
2 times inter-member standard deviation) for precipitation change in 
the STD ensemble (upper) and PGW ensemble (lower). From left to 

right, S2N in fine scale pattern, S2N in fine-scale pattern with respect 
to standard deviation in full response, and S2N in the coarse-scale 
pattern
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3.2 � Predictions of the future climate state

We now take a complementary view, and ask how well the 
future climate state can be predicted. As explained in the 
methods we take one member i to be the truth, and try to 
predict its future state using information from the remaining 
members j, resulting in a matrix of 240 predictions (16 times 
15 predictions). We use two measures of the quality of these 
“predictions”, the spatial correlation between the real and 
predicted climate state, and the spatial mean of the absolute 
(temperature) or relative (precipitation) error (see methods). 
Here, we focus on the error, and results for correlation are 
shown in the Supplement.

The temperature and precipitation error of the seven 
predictions (Sect. 2.3) derived from the STD ensemble are 
shown in Figs. 8 and 9, respectively. In these figures, we plot 
the reference prediction method, F

pred Full,i  (the delta change 

method based on the full change derived from member j, 
Eq. 1) on the top left position (a). Shown is the percentage 
of predictions that improve (negative, when most predictions 
get worse) compared to the reference prediction method, as 
well as the mean error averaged over all 240 predictions. As 
summarized in Table 1 (“Appendix”) the prediction methods 
using high resolution change information are in the top row 
of each figure (from left to right, Eqs. 1, 3, 5, 7) and those 
using only low resolution are in the bottom row (from left to 
right, Eqs. 2, 4, 6). By comparing the three prediction pairs, 
for instance Eq. 1 with Eq. 2, we measure added value (see 
methods).

For temperature adding the high resolution information 
improves the quality of the prediction (both in terms of mean 
error across all predictions as well as the number of predic-
tions improving). From left to right, starting from the mean 
control climate state improves the prediction (Fig. 8b), but 
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Fig. 6   Taylor diagrams showing correlation and standard error of 
mean winter precipitation change between the forced response (ref-
erence) and different projections (e.g. individual members of the 
ensemble). The reference is given on top; e.g. in the left top panel 
each member of the STD (orange) and PGW (green) ensemble is 
compared to the full forced response of the STD ensemble (note the 

comparison to the PGW forced response in the right-hand plots). 
Upper plots compare individual members of the PGW (green) and 
STD (orange) members to the forced response showing AV of the 
PGW approach; lower plots compare filtered (blue) and full resolu-
tion, unfiltered (red) results showing AV of fine-scale information
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a much bigger improvement can be obtained by using the 
perfect large-scale change (Fig. 8c).

Interestingly, the direct prediction (Fig. 8d) is the best 
prediction, apart from the prediction with perfect large-scale 
changes. This may look surprising, but can actually be eas-
ily understood from a simple analysis of the errors, giving 
a ~ 40% improvement from the direct prediction with respect 
to the reference prediction F

pred Full,i (see “Appendix”). In 
words, in a perfect model approach and without further 
knowledge on e.g. the large-scale change, the direct predic-
tion (top right) is optimal. The reference (or full) prediction 
can be written as the direct prediction multiplied by a correc-
tion term based on the difference between control state of the 
ith and the jth member which introduces two additional error 
terms due to internal variability. The prediction starting from 
the mean climate state has only one additional error term 
due to internal variability and behaves, in this respect, in the 
middle between the direct prediction and the full prediction.

For winter precipitation in Fig. 9, the best predictions 
use the perfect large-scale change (Fig. 9c, g), and the direct 
prediction is again the best remaining prediction (Fig. 9d). 

So, the ordering from left to right is basically similar as 
expected from the error analysis. However, in this case, add-
ing fine-scale changes does not “add value” to the predic-
tions, but on average makes the predictions slightly worse. 
Hence, with the large internal variability in the fine-scale 
change patterns, it is not guaranteed that adding those lead 
to better information in a prediction sense (see also summary 
statistics in Figs. 11, 12).

Since the PGW members are (much) better at project-
ing the systematic forced responses at large scales as well 
as small scales, using those may give better predictions of 
the future state as well. In this case, the change from mem-
ber “j” in the prediction equations (Eqs. 1–7) is taken from 
the PGW runs. Except for the direct prediction (right top) 
all predictions are indeed better taking the PGW changes 
instead of the changes derived from the STD ensemble. But 
even in the PGW approach, adding the fine-scale changes 
does not consistently improve the predictions, and only mar-
ginal differences are found.

For temperature the skill of the PGW approach is compa-
rable to the standard approach. Although internal variability 
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Fig. 7   Same as Fig. 6 but now for mean winter temperature change



2573A perfect model study on the reliability of the added small‑scale information in regional climate…

1 3

is smaller in the PGW ensemble, giving the potential for 
more reliable predictions, this advantage is offset by a 
slightly biased response in the PGW approach as compared 

to the standard ensemble; the systematic temperature 
response of the PGW approach in Fig. 4 is lower than in the 
standard ensemble in Fig. 2.
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Fig. 8   Mean absolute error (in degrees) of the predictions of the 
future state for mean winter temperature using the GCM driven 
ensemble. The ith member predicted is along the x-axis, whereas the 
jth member used in on the y-axis. On the top row are predictions (left 
to right) from Eqs. 1, 3, 5, and 7, whereas the bottom row are predic-
tions from Eqs. 2, 4 and 6 (see also Table 1 in the “Appendix”). Num-

bers on top of each panel give at the left position mean error over all 
predictions (including 5/95th percentile of the 240 predictions) and 
at the right position the percentage of predictions improving as com-
pared to the reference prediction from the STD ensemble (shown in 
left top panel)
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Fig. 9   Same predictions but now for mean winter precipitation and for a mean relative error (fraction)
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Up to here we analysed the behaviour over the full 
domain, which may hide beneficial effects of the fine-scale 
information in certain areas. Therefore, we also computed 
statistics averaged over the Alpine region (between 44 and 
48°N, and 4 and 20°E). For temperature (Fig. 11) general 
improvements are found by adding the high resolution 
change information (by comparing red with blue prediction 
pairs) and improvement become more pronounced for the 
Alpine region. In contrast to the full domain, the PGW based 
predictions are now better for the Alpine region as compared 
to the STD based predictions (Fig. 11c, d). For precipita-
tion (Fig. 12) results of the full domain and Alpine region 
are almost the same. For the STD ensemble, predictions 
deteriorate when adding fine-scale changes, whereas with 
in PGW approach there is no substantial difference (with 
slight improvements for the Alpine region).

4 � Discussion

We found fine-scale patterns in the systematic forced 
response, confirming results in other studies (Torma et al. 
2015; Giorgi et al. 2016). But, these systematic fine-scale 
patterns can be rather small compared to internal variabil-
ity at large but also at fine scales. Whether the fine-scale 
response patterns add value for a user depends on their per-
spective. If their perspective is primarily based on change 

information due to global warming—for instance because 
they have an application where the change in risk is key—
they may be mostly interested in the forced response. Yet, 
other user applications may be more sensitive to natural cli-
mate variability. Here, we also note that internal variability 
depends on the time window used—commonly 30 years—
which may not correspond to the time period relevant for 
the user.

Our results show that within the perfect model frame-
work a simple delta change approach using an assumed to 
be known large-scale change is generally producing very 
good results in a prediction sense. Since the large-scale 
change is often dominated by internal variability, which is 
essentially unpredictable, this is of limited practical user rel-
evance. But, the information can be used for benchmarking 
statistical emulators of high resolution climate information, 
such as used to fill in missing RCM simulations in a GCM-
RCM matrix (Christensen and Kjellström 2021; Doury et al. 
2022). At least the statistical emulator should perform bet-
ter than present-day climatology plus the coarse resolution 
change derived from the low resolution model.

We have used a perfect model approach, assuming that 
there are no model errors and that the spatially smoothed 
signal is perfectly representing the coarse scale information. 
It is however important to make two remarks in this respect.

First, the reason that the direct model prediction of the 
future climate state (Eq. 7) is better than the delta change 
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Fig. 10   Same as Fig. 9, but now taking the information for the “j” member from the PGW runs (taking the change information from the PGW 
runs). Note that the % of improved predictions shown at the right-top are compared to the reference prediction from the STD ensemble (Fig. 9a)
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approach using changes superimposed on the present-day 
climate state is related to the perfect model assumption. 
The delta change approach involves a correction term (as 
compared to the direct approach) based on the difference 
between two realizations of the present-day climate state, 
which is introducing two additional error terms related to 
internal variability. Yet, these additional terms are equiva-
lent in form to a simple bias correction. Thus, realizing that 
models are usually biased and correcting this bias based on 
the control period results, the direct approach will essentially 

become equivalent to the full delta change approach, with 
again two additional error terms due to natural variability.

Second, by our filtering approach we neglect that added 
value from the high resolution model runs can also occur at 
larger scales. The interaction of the large-scale flow with for 
instance the orography can improve precipitation amounts 
also when aggregated to the larger scale. We cannot estimate 
this within our modelling context. In principle, one could 
look at the difference between the driving GCM and filtered 
RCM information. However, since the models have different 
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Fig. 11   Mean of the absolute value of temperature bias in win-
ter across the full prediction matrix. Left two panels, mean over the 
domain, STD (a) and PGW (b) based predictions; right two panels, 

mean over the Alpine region (c, d). In red are predictions based on 
full changes, in blue predictions based on only large-scale changes
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Fig. 12   As previous figure, but now for absolute spatial mean of the relative error in winter mean precipitation across the full prediction matrix
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physical parameterizations it is difficult if not impossible to 
disentangle which part of the difference is due to the higher 
resolution and which part is due to the fact that we are com-
paring two different model physics.

The PGW ensemble generally gives better signal-to-
noise ratios; that is, smaller internal variability compared to 
the forced response signal. In particular, fine-scale change 
patterns appear rather robustly simulated in single model 
members. However, this improvement of the signal-to-noise 
should be compared to biases in the change introduced by 
the PGW approach. For the winter season it appears that 
PGW is able to catch the forced response rather well, in 
particular at the seasonal mean time scale. Also, fine-scale 
patterns in winter temperature are well simulated; besides 
the mean winter temperature, we also tested cold days (1st 
percentile) and warm days (99th percentile) and found 
(very) high correlations in the fine-scale pattern in the PGW 
ensemble compared to the standard ensemble.

In this paper, we studied the winter season motivated by 
the existence of pronounced small-scale forced change fea-
tures as well as the considerable internal variability. Our 
results do not necessarily carry over to other seasons. We 
noticed for instance that for the summer season the response 
of rainfall is highly dependent on atmospheric lapse rate 
changes as provided through the boundaries, creating large 
biases in the response of our PGW experiment. However, 
other PGW experiments performed at a larger domain gave 
(much) better results for summer, more consistent with other 
published results (Brogli et al. 2019a, b). An in-depth analy-
sis of the degree to which the PGW is able to reproduce the 
forced response from the standard ensemble is outside the 
scope of this paper. However, considering the improvement 
in signal-to-noise as shown here, this is definitely worth fur-
ther exploring, in particular considering the high computa-
tional demands of regional model simulations.

5 � Conclusion

We investigated the added value of fine scale information 
in perfect model framework, in relation to uncertainty due 
to internal variability. We used a 16 member single model 
initial-condition regional climate model ensemble by 
RACMO2 embedded into EC-Earth2.3, and defined fine 
and large-scale information by a spatial filter. In addition 
to the standard ensemble, we also produced a pseudo global 
warming (PGW) ensemble for the future period. We studied 
mean winter precipitation and temperature change between 
the control, 1991–2020, and future, 2071–2100 period.

The ensemble mean response—the forced response—
show systematic changes at fine scales, predominantly 

related to the orography confirming results documented in 
the literature. Comparing the forced response with variabil-
ity within the ensemble members—the internal or natural 
variability—the fine-scale response pattern is rather small 
for precipitation which shows strong internal variability at 
large and fine scales. This implies that single members pro-
vide only limited information on the forced response, and 
the added value of fine scale information is hard to prove. 
This can potentially be improved substantially by using the 
PGW approach. For winter precipitation, a single PGW 
member contains much more reliable information on the 
forced response including its fine-scale component than a 
single ‘normal’ ensemble member. This advantage of the 
PGW approach, however, should be compared to biases in 
the response introduced by the approach; for example the 
slightly higher forced precipitation response and lower tem-
perature response (Figs. 1, 2, 3, 4). For temperature, signal 
to noise is much better, and single model simulations do 
provide information on fine scale systematic changes. In 
this case, the improvements by the PGW approach are less 
pronounced.

We further studied how well a future climatic state can 
be predicted assuming one ensemble member to be the truth 
and using change information from the other members. In 
this purely predictive setting, adding fine-scale information 
usually improves the predictions for temperature. However, 
this is not the case for precipitation; adding fine scale change 
information from the normal (STD) ensemble generally 
degrades the predictions, whereas the predictions using the 
PGW ensemble neither improve nor degrade by adding the 
fine scales (with some indication of improvements for the 
Alpine region).

In this paper we took two rather extreme points of view: 
a change perspective and a purely predictive perspective. 
In practice, however, user perspectives will probably be 
in between these two. To some extent users will weigh 
information from systematic changes and uncertainty due 
to random unpredictable noise. To some extent users are 
also likely to need absolute values (the climatic state) as 
decisions are often based on absolute criteria. This is also 
dependent on the user time horizon. Short term decisions 
are usually more taken in a predictive environment (such 
as, decadal forecasts) whereas longer term decisions may 
more strongly depend on, for instance, the change in risks. 
The added value of fine scales in this study is most apparent 
in the (systematic) change perspective, whereas in a purely 
predictive perspective the user may often be best served with 
only the large scale changes, in particular when the unpre-
dictable climate noise component is large. However, we also 
acknowledge that this definitely needs further investigation.
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Appendix

Error analysis

We perform here an error analysis for precipitation change, 
using relative changes.

Assume

where the subscript m terms are the true mean climate and 
�i are the error terms due to natural variability: the relative 
deviation in ensemble member i compared to the true cli-
mate state.

For the delta change method, the change factor based on 
ensemble member j is given by:

Thus the change factor contains two error terms due to 
natural variability.

This gives a prediction based on the delta change 
approach:

and comparing the prediction with the actual state:

The direct method as compared to the actual state gives
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Assuming that the errors of control and future period are 
from the same distribution with mean zero and standard 
deviation σ, the error has standard deviation with width 2σ 
in the delta change method, and �

√

2 in the direct approach. 
So, the expected error is approximately 40% larger in the 
delta change approach. Likewise, it can be shown that the 
delta change approach starting from the mean climatic state 
contains 3 error terms, and sits therefore in the middle 
between the direct and the normal delta change approach.

The PGW approach, essentially replaces the response to

where �PGW is the bias in the response due to fact that we 
used the PGW approach, and where we neglected the varia-
tions between the members (which are substantially smaller 
than the variations in the standard ensemble). In the final 
error equations, we are now left with two error terms, but 
modified by the bias term. So in a prediction sense we can 
win two error terms by using the PGW approach. This 
means that when the influence of the bias is small, the PGW 
approach can reach the quality of the direct approach.

We note that the advantage by the direct approach is aca-
demic. Since models are always biased the direct prediction 
cannot be used directly and a bias correction step is first 
needed. This again adds 2 error terms, and in fact makes this 
equivalent to the delta change approach.

For absolute changes, similar error equations can be 
derived, assuming the following form

The final equations contain identical error terms, yet 
without the higher order terms.

Table of predictions

See Table 1.
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Table 1   Summary of the predictions (Eqs. 1–7) in a table form, and in the same format as used in Figs. 8, 9 and 10

Upper row are predictions using fine-scale change (or future) information; lower row only coarse scale change information

Standard delta change based on 
actual control climate

Delta change based on mean control 
climatology

Delta change using perfect knowledge of 
large scale change

Direct prediction 
of future state
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