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Abstract
Large-ensemble climate model simulations can provide deeper understanding of the characteristics
and causes of extreme events than historical observations, due to their larger sample size. However,
adequate evaluation of simulated ‘unseen’ events that are more extreme than those seen in historical
records is complicated by observational uncertainties and natural variability. Consequently,
conventional evaluation and correction methods cannot determine whether simulations outside
observed variability are correct for the right physical reasons. Here, we introduce a three-step
procedure to assess the realism of simulated extreme events based on the model properties (step 1),
statistical features (step 2), and physical credibility of the extreme events (step 3). We illustrate
these steps for a 2000 year Amazon monthly flood ensemble simulated by the global climate model
EC-Earth and global hydrological model PCR-GLOBWB. EC-Earth and PCR-GLOBWB are
adequate for large-scale catchments like the Amazon, and have simulated ‘unseen’ monthly floods
far outside observed variability. We find that the realism of these simulations cannot be statistically
explained. For example, there could be legitimate discrepancies between simulations and
observations resulting from infrequent temporal compounding of multiple flood peaks, rarely seen
in observations. Physical credibility checks are crucial to assessing their realism and show that the
unseen Amazon monthly floods were generated by an unrealistic bias correction of precipitation.
We conclude that there is high sensitivity of simulations outside observed variability to the bias
correction method, and that physical credibility checks are crucial to understanding what is driving
the simulated extreme events. Understanding the driving mechanisms of unseen events may guide
future research by uncovering key climate model deficiencies. They may also play a vital role in
helping decision makers to anticipate unseen impacts by detecting plausible drivers.

1. Introduction

Weather extremes such as floods, droughts, heat-
waves and cyclones can have major societal impacts
including mortality and morbidity (Gasparrini et al
2015, Raymond et al 2020), and economic damages
(Felbermayr and Gröschl 2014, Klomp and Valckx

2014, Kousky 2014). Weather extremes can also
increase inequality (Dell et al 2012, Hallegatte and
Rozenberg 2017). In risk analyses, the full range of
impacts that may arise from climate and weather
extremes must be evaluated (Sutton 2019). For
example, the credible maximum extreme event is
important for risk estimates of potentially disruptive
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impacts (Wilby et al 2011), such as mortality, mor-
bidity, and damage from floods in large river sys-
tems and from dam failures (e.g. Vano et al 2019),
or for climate-related shocks to food security (Kent
et al 2017). However, brevity and sparsity of histor-
ical records are well known constraints that confound
likelihood estimation of extreme events (Alexander
2016, Wilby et al 2017). Climate model projections
reduce this limitation but may not capture the full
range of extreme events that can arise from climate
variability when just a few ensemble members are
used (Van der Wiel et al 2019b, Mankin et al 2020).
However, large ensemble simulations from seasonal
to multi-decadal prediction systems offer a solution
to the estimation of rare events due to their mul-
tiple realizations (Allen 2003, van den Brink et al
2005, Thompson et al 2017, Van der Wiel et al 2019b,
Mankin et al 2020, Brunner and Slater 2022).

Traditionally, large ensembles have been gener-
ated by stochastic weather generators trained on the
historical record (e.g. Wilks andWilby 1999, Brunner
and Gilleland 2020). However, advances in super-
computing and the physical realism of climatemodels
have facilitated the exploitation of large ensemble
simulations for the emulation of events with physic-
ally plausible drivers that have not yet been observed
(Coumou and Rahmstorf 2012, Stevenson et al 2015,
Stott et al 2016, Kent et al 2019, Thompson et al 2019,
Deser et al 2020, Kay et al 2020, Swain et al 2020,
Brunner and Slater 2022). Following Thompson et al
(2017), we define the use of large ensemble simula-
tions to estimate ‘unseen’ events more severe than
those seen in the historical record as the Unpreceden-
ted Simulated Extremes using Ensembles (UNSEEN)
approach.

One drawback of using model simulations is that
biases are likely to exist, which may occasionally pro-
duce unrealistic extreme events. Many techniques
have been developed to uncover potential system-
atic climate model biases (Eyring et al 2016, 2019),
compare simulated extreme indices with observa-
tions (Weigel et al 2021), and to evaluate the consist-
ency between simulated and observed distributions of
extreme events (Thompson et al 2017, 2019, Kelder
et al 2020, Suarez-Gutierrez et al 2021). However,
none of these procedures can determine whether the
models are correct for the right physical reasons.

Bias correction (or data adjustment) methods are
widely used to reduce model discrepancies, espe-
cially when coupling climate model simulations with
impact models (Warszawski et al 2014), but do not
necessarily correct the simulations for the right phys-
ical reasons (Maraun et al 2017). For example, a mis-
match between simulations and observations may
be caused by observational uncertainties and natural
variability, rather than by model biases (Addor and
Fischer 2015, Casanueva et al 2020). Existing evalu-
ation and correction methods are thus not designed
for simulated unseen events. As a consequence, large

ensemble simulationswith extreme events outside the
range of observed variability raise an important ques-
tion: to what extent can such outliers be trusted? Are
the events unseen or unrealistic?

In this paper, we demonstrate a framework to
check that the conclusions about unseen events
obtained from large ensemble analyses are sound.
Our three steps for assessing the realism of simu-
lated events outside the range of observed variabil-
ity (figure 1) are inspired by the protocol for event
attribution to climate change (Philip et al 2020). Step
1 is to review model properties and assess whether
the system representation has the capability to rep-
resent relevant processes leading to extreme events.
Step 2 is to evaluate the statistical features of the large
ensemble of simulations (whether from global cli-
mate models or regional climate models) by evalu-
ating the consistency of simulated distributions with
observations. Bias correction is an integral part of
assessing statistical features because it is common
practice (e.g. Warszawski et al 2014) but may influ-
ence the simulated distribution of extreme events and
impacts.We, therefore, evaluate the statistical features
for both raw and bias corrected values. Step 3 is to
assess the physical credibility of the model simula-
tions. Although some studies check the physical pro-
cesses leading to extreme events—such as telecon-
nections and land–atmosphere interactions (Van der
Wiel et al 2017, Thompson et al 2019, Vautard et al
2019, Kay et al 2020)—establishing physical credibil-
ity is not straightforward (Philip et al 2020), especially
for unseen events.

Wedemonstrate our framework using a case study
of Amazon floods. In 2009 and 2012, floods in the
Amazon led to the spread of disease, food, and water
insecurity (Davidson et al 2012, Hofmeijer et al 2013,
Marengo and Espinoza 2016, Bauer et al 2018). At
that time, the 2009 flood was the most extreme in
107 years of records, yet three years later it became
the second highest in 110 years, drastically altering
likelihood estimates.Despite theAmazon stage record
being one of the longest in the world, the ∼100 year
series is still too short for estimating credible, worst-
case events.

To sample more flood events than those avail-
able from the historical record, we use EC-Earth
large ensemble global climate model simulations
coupled with the PCR-GLOBWB global hydrological
(water balance) model from an earlier study (Van der
Wiel et al 2019b). EC-Earth and PCR-GLOBWB are
state-of-the-art global models that have been applied
in numerous multi-model intercomparison studies,
such as within the Coupled Model Intercomparison
Project (e.g. Taylor et al 2012, Samaniego et al 2019,
Wanders et al 2019), and have been validated glob-
ally (Hazeleger et al 2012, Sutanudjaja et al 2018),
including for Amazon streamflow (van Schaik et al
2018). Here, we extend previous studies by evaluating
whether simulated extremes that exceed the historical
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Figure 1. A three-step procedure for evaluating the realism of large ensemble simulations lying outside observed variability. Step 1
is to assess whether the model properties are fit for purpose. Step 2 is to statistically evaluate the simulations, then apply bias
correction as required. Step 3 is to evaluate the credibility of the processes within the models leading to the simulation of an
unseen event. The orange colour gradient indicates the increasing confidence in the simulation of unseen events throughout the
framework.

record are likely to be unseen events or simply unreal-
istic. We do this by: reviewing the ability of EC-Earth
and PCR-GLOBWB to simulate extreme Amazon
floods (Step 1); assessing the statistical consistency of
these large ensemble simulations with observations
using raw data or bias corrected simulations (Step 2)
then; exploring the physical drivers behind the largest
simulated floods (Step 3).

2. Data

2.1. Study area
The Amazon basin contains the largest contiguous
tropical forests in the world, covering an area of
6.5 million km2. The Amazon river is an import-
ant but vulnerable freshwater ecosystem (Castello
et al 2013), and a key source of food for local
communities. Annual high and low flows in this river

system are part of a seasonal regime, referred to as
the flood pulse. Local livelihoods are adapted to ‘nor-
mal’ levels of inter-annual variability (Pinho et al
2012), such that annual floods are not necessarily per-
ceived as ‘bad’ (Langill and Abizaid 2020). However,
occasionally, climate variability can lead to extreme
flows (Schöngart and Junk 2007, Towner et al 2020)
that exceed coping capacities of local communit-
ies by impacting transportation, interrupting educa-
tion and trade, and causing health problems, such as
food insecurity (through agricultural losses), water
insecurity, and vector-borne diseases (Hofmeijer et al
2013, Pinho et al 2015, Bauer et al 2018). The 2009
flood lasted over two months, destroyed half of the
agricultural production, and affected over 20 000
families in the Amazon (Sena et al 2012). These
events underline the socio-economic importance of
estimating plausible Amazon extreme floods. Here,
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Figure 2. The Amazon basin with selected sub-catchments. (a) Circles indicate the location of the Amazon outlet (orange) and
observation stations at the main Amazon River in Obidos (brown), and two southern tributaries: Tapajos (grey) and Xingu
(black). Thick orange, grey and black lines indicate the corresponding catchment areas. (b) Observed streamflow time series at
the three stations indicated in (a), and their summed values (Pooled).

we employ streamflow at the outlet of the Amazon
river (orange circle in figure 2) to evaluate extreme
floods.

2.2. Observations
The ∼100 year series mentioned above is for river
stage (water level) only. The most downstream
streamflow record for the main Amazon River is loc-
ated at Obidos (brown circle in figure 2(a)). After
Obidos, two tributaries from the south, Tapajos (grey
circle) and Xingu (black circle in figure 2(a)), join
the main Amazon River before the river reaches the
outlet. For the period 1981–2010, streamflow data
obtained using a rating curve are available for all three
stations (figure 2(b)) with less than 10%missing from
the catchments attributes for Brazil (CABra) series
(Almagro et al 2021). In the CABra dataset, gauged
daily streamflow from the Brazilian Water Agency
are quality controlled to remove outliers, duplicate
dates and values. We aggregate the daily data into
monthly streamflow averages to match the simula-
tions, then sum the streamflow values in Obidos,
Xingu, and Tapajos (‘Pooled’, figure 2(b)). By pooling
(summing) observed station records, we assume neg-
ligible streamflow losses between Obidos and Tapajos
towards Xingu over monthly timescales. The catch-
ment areas of Obidos, Tapajos, and Xingu represent
99.3% of the total catchment area within the model
simulations and, hence, can be reasonably compared.
We compute specific discharge (converting cumecs to
millimetres per day) to normalize for the slight dif-
ference in catchment area between the observations
(brown + grey + black catchment outlines) and the
simulations at the outlet (orange catchment outline
in figure 2(a)).

2.3. Simulations
We use the large ensemble of streamflow simu-
lations presented in Van der Wiel et al (2019b).
Streamflow was modelled by forcing the global

hydrologicalmodel PCR-GLOBWB (Sutanudjaja et al
2018) with the large ensemble simulations from EC-
Earth (Hazeleger et al 2012).

EC-Earth v2.3 is a fully coupled free-running
global climate model, that combines atmospheric,
oceanic, land and sea-ice model components
(Hazeleger et al 2012), run at hourly (output at daily)
time-step and 1.1◦ spatial resolution. A 2000 year
‘present climate’ ensemble was created that is rep-
resentative of global mean surface temperatures
(GMSTs) similar to those observed in 2011–2015
(Van der Wiel et al 2019b). First, 16 long transient
simulations were run with historical forcing (1860–
2005) and RCP8.5 (2006–2100). Then, 25 ensemble
members were re-initialized with perturbed physics
frommodel years matching observed GMST. The 400
ensemble members (16× 25) were run for five years,
resulting in a 2000 year ensemble.

EC-Earth precipitationwasmodified before input
to PCR-GLOBWB by correcting for too many drizzle
days (a recognized limitation of climate models (Dai
2006)) then by adjusting to the observed monthly
total precipitation. Drizzle days were corrected using
a cut-off value, whereby precipitation days below
the threshold are set to 0. This value was determ-
ined for each grid cell by matching the amount of
EC-Earth precipitation days to ECMWF Re-Analysis
(ERA-Interim, Dee et al 2011). The total monthly
precipitation was corrected linearly for the precipit-
ation days after removing drizzle days by matching
with ERA-Interim monthly totals. Bilinear interpol-
ation was applied between EC-Earth gridcell (1.1◦)
values to regrid output to the PCR-GLOBWB resol-
ution (0.5◦).

PCR-GLOBWB is a fully distributed, macro-
hydrological model that simulates the global ter-
restrial water cycle including natural components,
with human-water interactions, such as irrigation,
reservoirs, and abstractions (Sutanudjaja et al 2018).
Historical simulations of discharge, water storage,
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and water withdrawal have previously been validated
against observations globally, and show a high degree
of accuracy (Sutanudjaja et al 2018). For the stream-
flow large ensemble used here, PCR-GLOBWB was
run on a daily time-step at 0.5◦ spatial resolution
using standard parameterisation (Sutanudjaja et al
2018), with outputs reported as monthly averages.
For example, the parameterisation of the land sur-
facemodule (covering for example run-off generation
mechanisms), is governed by soil (e.g. FAO Digital
Soil Map of the World, Version 3.6), land cover (e.g.
GLCC v2.0, Loveland et al 2010), and topographic
layers (e.g. HydroSHEDS, Lehner et al 2008). Rout-
ing used in this study is a simplified dynamic routing
based on the Manning’s equation, to reduce compu-
tational demands (Sutanudjaja et al 2018). For more
details on the streamflow simulations, we refer to
(Van der Wiel et al 2019b).

3. Methods

In this section, the methods are described for assess-
ing the realism of simulated ‘unseen’ extreme events,
larger than those seen in the historical record. The
ability of EC-Earth and PCR-GLOBWB to simulate
Amazon floods are reviewed (Step 1 in figure 1); the
statistical features of the simulations are compared
with observations (Step 2 in figure 1); and the physical
credibility of the largest flood simulation is evaluated
(Step 3 in figure 1).

3.1. Model properties (Step 1)
This first step is to evaluate the general capability of
the model to simulate the target extremes a priori.
Thismay include comparing properties such asmodel
scale, resolution, boundary conditions, process rep-
resentation and model chain coupling, to the target
extreme. Reviewing the credibility of a certain model
structure or set-up to simulate an extreme is complic-
ated by the complexity of climate and impact mod-
els. Whereas the development of evaluated and bias
corrected standard model experiments—such as the
Inter-Sectoral Impact Model Intercomparison Pro-
ject (Warszawski et al 2014)—hasmuch improved the
uptake and uncertainty analysis of model simulations
in impact analyses (e.g. Boulange et al 2021, Orlov
et al 2021, Tabari et al 2021, Thiery et al 2021), model
development expertise is typically separated from
model analysis and decision-making. Consequently,
it can be complicated for users to review the adequacy
of the model structure for simulating their target
extremes. A suite of questions (which may be adap-
ted depending on the type ofmodel) can be employed
to evaluate the model properties identified above. For
the Amazon floods we apply two searching questions:

(a) Is the spatial or temporal resolution of the simu-
lations too coarse to represent key processes?

(b) Are key processes dependent upon model para-
meterisation as opposed to direct simulation?

These questions are intentionally phrased to test
whether the ‘null hypothesis’ (that the model is
adequate) can be rejected rather than prove that it is
true. Thus, passing these questions increases our con-
fidence in the model, such that we progress to Step 2.
These questions are not meant to, and cannot, cover
the fitness-for-purpose of all possible model chains
for all types of target extremes and impacts. Rather,
they would need to be adjusted accordingly. We refer
to IPCCAR6 chapter 10 section 3.3 for an overview of
model performance across model chains and types of
extreme events and their relevant processes (Doblas-
Reyes et al 2021).

3.2. Statistical features (Step 2)
The statistical consistency of the streamflow ensemble
and observations was evaluated using a fidelity test
(Thompson et al 2017, 2019, Kelder et al 2020).
We select the annual maximum monthly streamflow
for the grid cell corresponding to the outlet of the
Amazon (1.25◦ S, 51.75◦ W) and convert it into spe-
cific discharge to allow for meaningful comparison
with observations. We bootstrap with replacement
10 000 timeseries of 30 years (i.e. the same length
as the observations) from the 2000 year simulations.
For each bootstrapped timeseries, the mean, stand-
ard deviation, skewness, and kurtosis are calculated.
The resulting range of the large ensemble is compared
with observations.

In addition to testing statistical consistency,
we visually inspect the extreme value distributions
derived from simulations and observations. We fit
the univariate, stationary generalized extreme value
(GEV) distribution to the observed annualmaximum
streamflow, using maximum likelihood estimation of
the distribution parameters. We select the station-
ary GEV distribution because it is widely applied
for flood analyses in practice (Coles 2001, Madsen
et al 2014). Other distributions and/or nonstationary
behaviour could be explored but are beyond the scope
of this paper. We employ a parametric bootstrap to
derive confidence intervals. In addition, we under-
take a frequentist analysis of observed and simulated
annual maxima using the return period as the length
of the data divided by the rank of the extreme. For
example, the highest value within 2000 years of sim-
ulations is estimated as a 2000 year return period, the
second highest as the 1000 year return period, and so
forth.

Since models are imperfect representations of
reality, systematic errors may exist in model simula-
tions. Therefore, model errors are often bias correc-
ted before outputs are used for impact assessments
(Warszawski et al 2014). However, bias corrections
may adjust the simulated distribution of extremes.
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We assess the sensitivity of the monthly specific dis-
charge simulations to two routinely used bias cor-
rection methods: empirical quantile mapping and a
scaling factor. Empirical quantile mapping is widely
applied in impact studies (Zscheischler et al 2019)
whereas scaling factors (additive for temperature and
multiplicative for precipitation) are common in event
attribution studies (Philip et al 2020). We estimate
values of the empirical cumulative distribution func-
tion for regularly spaced quantiles via the ‘qmap’ R-
package (Gudmundsson et al 2012). These estimates
are then used to perform quantile mapping using lin-
ear interpolation and a constant correction for the
extrapolation, as suggested by Boé et al (2007). For
the constant scaling factor method, we use the ratio
between the mean of the simulated and observed
annual maximum monthly streamflow. We pool all
members for estimating the bias correction factors,
as correcting eachmember independently reduces the
spread of the ensemble (Chen et al 2019).

3.3. Physical credibility (Step 3)
In Step 3, we assess the physical credibility of the pro-
cesses leading to the simulation of an extreme event
that has not yet occurred (figure 1). First, the pro-
cesses leading to the simulation of unseen events are
identified. We divide this into three sub-steps: (a) the
spatial-temporal build-up of the unseen event; (b) the
driving atmospheric variables and processes within
the climatemodel; and (c) the driving processes in the
impact model. Checking the credibility of these pro-
cesses is not straightforward, but the processes gen-
erating the largest simulated extreme can be placed
into perspective with historical events. In the case of
the Amazon, one might ask whether the largest sim-
ulated monthly flood is the result of a meteorological
event similar to historical events (but more intense),
or whether other mechanisms were involved. If other
mechanisms are identified, their theoretical plausib-
ility can be assessed. As a final check, the model prop-
erties related to the identified processes are reviewed
(feeding back in Step 1).

For illustrative purposes, the spatial and temporal
characteristics of the largest simulated monthly flood
are compared with the observed flood in 2009, for
which data are available across all observation sta-
tions. In addition, we calculate the empirical 2-, and
20 year monthly floods, based on the 29 year pooled
record. Empirical return values are estimated as the
quantile corresponding to the 1 − (1/return period),
hence the two year value is the 0.5 quantile and the
20 year value is the 0.95 quantile. For the temporal
build-up of the flood, we show the streamflow val-
ues in the year preceding the simulated and observed
flood. We use simulations at the Amazon outlet and
pooled observations at Obidos, Tapajos, and Xingu
(see the Data section).

We then assess the spatial distribution of the
streamflow contributing to the flood peak for

each month in the year preceding the largest sim-
ulated monthly flood. For each grid cell in the
Amazon basin, we calculate the percentage of the
streamflow compared with the flood peak (supple-
mentary figure 1 available online at stacks.iop.org/
ERL/17/044052/mmedia). After evaluating the
spatial-temporal build-up of the largest simulated
flood event, we assess the credibility of the drivers in
EC-Earth and in PCR-GLOBWB. We plot EC-Earth
precipitation over the Amazon basin for each month
in the year preceding the largest simulated monthly
flood (supplementary figure 2), and we investigate
the PCR-GLOBWB direct runoff and bias correc-
ted precipitation over the Amazon in addition to the
streamflow and raw precipitation.

4. Results

Step 1 of the event evaluation procedure is to review
whether there are known limitations of the EC-Earth
andPCR-GLOBWB resolution and process represent-
ation that may influence Amazon flood peak simu-
lations. The daily temporal resolution of both EC-
Earth and PCR-GLOBWB is sufficiently fine when
compared with the averaged monthly values used in
the analysis and because floods in the Amazon are
part of a seasonal regime (lasting up to severalmonths
Barichivich et al (2018)) there is no reason to dis-
miss the simulations based on their temporal res-
olution. The large extent of the Amazon basin also
means that the spatial distribution is adequately rep-
resented by the 1 × 1 degree climate model and
0.5 × 0.5 degree hydrological model. In contrast,
small and steep catchments with faster rainfall-runoff
responses would require higher spatial-temporal res-
olution (Schaller et al 2020).

Considering process representation, EC-Earth is a
global climate model that simulates the atmosphere,
ocean, land, and sea-ice components. Important
modulators of Amazon floods are the El Nino South-
ern Oscillation (ENSO) (e.g. Marengo and Espinoza
2016) and the Walker circulation (e.g. Barichivich
et al 2018), which are well simulated by EC-Earth
(Hazeleger et al 2012, Sterl et al 2012, Pausata et al
2017). However, EC-Earth underestimates precipit-
ation over the Amazon during December–February
and June–August seasons (Hazeleger et al 2012), pos-
sibly because convection is parameterised in EC-
Earth.

PCR-GLOBWB is a fully distributed global hydro-
logical model that generates runoff as a com-
bination of direct runoff, indirect flow (through
the soil reservoir), groundwater flow, and, snow-
melt. Canopy interception is included as initial
loss of precipitation (Sutanudjaja et al 2018). The
model covers all major components of the ter-
restrial water cycle including human-water inter-
actions. Runoff routing is included, but backwa-
ters are not simulated. van Schaik et al (2018)
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Figure 3. Evaluation and correction of UNSEEN Amazon flood simulations. (a) Extreme value distributions showing the monthly
specific discharge for the historical record (blue circles) alongside the UNSEEN streamflow large ensemble, both before (orange
circles) and after applying quantile mapping (Qmap, red circles) or a scaling factor (green circles). The blue line indicates the
estimated extreme value distribution based on the observed record including 95% confidence intervals based on parametric
bootstrapping. (b) As in (a) but highlighting Qmap and the observations to better illustrate the influence of the correction on the
simulated extremes.

report that PCR-GLOBWB monthly discharge simu-
lations forced with observed precipitation reproduces
observed discharge at Obidos ‘reasonably well’, with a
slight overestimation of the flood peaks.

As PCR-GLOBWB is a physically based, uncal-
ibrated model, it is prone to parameter uncertainty.
The parameters are based on static maps, that cannot
capture any non-stationarity in catchment proper-
ties, such as changing land cover due to deforestation.
PCR-GLOBWB soil parameters show the largest sens-
itivity for Amazon flood simulations (SpernaWeiland
et al 2015), but high-quality precipitation data and
streamflow routing are the dominant factors influ-
encing Amazon flood peak simulations (Hoch et al
2017, Towner et al 2019). Overall, the main sources
of uncertainty determined by this first step are,
therefore, the underestimation of precipitation from
EC-Earth, and the simplified runoff-routing scheme
used in PCR-GLOBWB. There is no reason to dis-
miss the EC-Earth and PCR-GLOBWB simulations
of unseen floods based on this first step alone, so we
further validate the simulated streamflow extremes
(Step 2), then identify and evaluate their drivers
(Step 3).

Validation of 2000 years of present-climate
Amazon monthly flood simulations is hampered by
the length of the observational record (30 years in this
case, 1981–2010). We therefore compare the statist-
ical features of the simulations with observations,
following Thompson et al (2017). The simulated
annual maximum streamflow (in terms of monthly
specific discharge, see ‘Simulations’) (UNSEEN) is
overestimated when evaluated against the historical
record (orange circles compared with blue circles
in figure 3(a)). The bias is confirmed by the stat-
istical consistency test, which shows that the mean
of the simulated annual maximum streamflow is

significantly higher than observations (orange lines
compared to blue line in figure 4(a)). Furthermore,
the simulations have a skewed distribution and long
tail when bootstrapped to the same length of the
observations (figures 4(b)–(d)), reflected by the wide
range of the variability (standard deviation) and the
shape (skewness and kurtosis). This means that either
the simulations are wrong, or the observations are too
short to well constrain the tail of the distribution.

We assess the sensitivity of the simulated distri-
bution of Amazon monthly floods to bias corrections
using quantile mapping and a scaling factor. Empir-
ical quantile mapping corrects all moments of the
distribution (red lines compared to orange lines in
figure 4) and, therefore, fits the observed distribu-
tion very well (figure 3(b)). However, in the pro-
cess, the correction adjusted the long tail as simu-
lated by the climate model (orange vs. red circles in
figure 3(a)). The constant scaling factor, in contrast,
only corrects the mean and standard deviation of the
simulated extremes (green versus orange vertical lines
in figure 4) and so retains the shape of the distri-
bution (skewness and kurtosis). Scaled simulations
match observations until the 50 year period but devi-
ate markedly beyond that (green versus blue circles
in figure 3(a)). We, thus, find high sensitivity of the
simulated Amazon monthly flood distribution to the
bias correction method, but it cannot be statistically
determined which is better—the physical credibility
must be assessed.

The final step is to assess the physical credib-
ility of a simulated unseen event (Step 3). In our
example, we first evaluate the spatial and temporal
characteristics of the maximum monthly flood sim-
ulation. We find that the flood peak occurred in
July, and most of the discharge was generated in
the month preceding the flood (figure 5(b)). This
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Figure 4. Testing the consistency of simulations and observations before and after bias correction. The distribution characteristics
of annual maximum streamflow before (orange) and after applying quantile mapping (red) and scaling (green) are compared to
observations (blue) in terms of the (a) mean (b) standard deviation (c) skewness and (d) kurtosis. Histograms show the
distributions for the 10 000 simulations bootstrapped to the length of the observed record and dashed lines indicate the 95%
confidence intervals. Note that the x-limits in (b) and (d) are set to 0.75 and 10 to improve the clarity of the figures (for the full
range see supplementary figure 3).

Figure 5. Spatial and temporal characteristics of observed floods and the largest simulated flood. (a), (b) Timing of observed
floods for the period 1981–2010 (blue, (a), (b)) and the largest simulated flood (orange, (b)). The 2 year and 20 year floods are
presented as ribbons representing 1–2 year and 2–20 year floods, to improve the clarity of the figure. (c), (d) The contribution of
the southern tributaries (Xingu and Tapajos, indicated in figure 2(a)) to (c) the observed 2009 flood and (d) the largest simulated
flood.

sequence is inconsistent with observed floods, which
gradually build up over the season (figures 5(a) and
(b)). We find that the simulated discharge origin-
ates from the southern tributaries Tapajos and Xingu
(figure 5(d) and supplementary figure 1), whereas

there is little contribution from these regions to
observed floods (figure 2(b) and figure 5(c)). Instead,
for the 2009 flood, precipitation progressed fromwest
to east over the catchment during January–May, res-
ulting in a temporally compounding flood peak in

8
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Figure 6. Identifying the driver of the largest simulated Amazon flood from (a) July average discharge, (b) direct runoff, (c)
precipitation and (d) bias corrected precipitation over the Amazon preceding the most extreme flood event within the model
experiments.

May (Marengo et al 2012, Sena et al 2012, Filizola et al
2014).

We further assess the physical drivers of the max-
imum simulated monthly flood to explain whether
this eventmight be caused by an unseen, rare physical
drivingmechanism that has not yet been observed, or
whether it might be caused by an unrealistic model
bias or error (figure 6).We determine that the flood is
driven by direct runoff from the south, which is linked
to a local peak in the bias-corrected precipitation used
to run the hydrological model. However, this peak is
not found in the raw precipitation data of EC-Earth.
We thus conclude that this unseen Amazon monthly
flood was an artefact of a bias correction mechanism
generating extreme precipitation over the Southern
portion of the Amazon.

Upon further investigation of the mechanisms
leading to this extreme flood, we find that a dry
bias in May-September EC-Earth precipitation over
the Amazon led to a high multiplication factor in
the correction of monthly total precipitation (sup-
plementary figure 4). A dry bias for the Amazon is
a well-known limitation of climate models (Eyring
et al 2019). However, the bias is especially marked
in the southern tributaries of the Amazon during
July (figure 7(a)). Closer inspection of a grid cell
within this region (white cross in figure 7(a)) reveals
how a small number of precipitation events were

unrealistically inflated by the high correction ratio
(figures 7(c) and (d). Indeed, the second largest sim-
ulated monthly flood also originated in the southern
tributaries during summer (supplementary figure 5).
Moreover, we find that the Amazon has the largest
correction ratio globally (>100, figure 7(b)). Other
large factors (10–100) are found in July and August
over Central Asia. Conversely, the smallest correc-
tions (1/1000) occur over the Sahara all year round,
with ramifications for the realism of drought estim-
ates there (supplementary figure 6).

5. Discussion

This work develops a procedure to evaluate simu-
lations of unseen events, illustrated through a case
study of Amazon floods. We use a large ensemble
of 2000 years of simulations from the EC-Earth
global climate model with offline coupling to PCR-
GLOBWB hydrological model (Van der Wiel et al
2019b). The two largest events within 2000 years of
model experiments are unexpectedly extreme when
compared to observations. Conventional evaluation
and correction methods (e.g. Maraun 2016, Eyring
et al 2019) are not well-suited to simulations out-
side observed variability, so we follow a three-step
procedure (figure 1), to evaluate the realism of these
simulated events. We review the ability of EC-Earth

9
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Figure 7. A global perspective on the bias correction issue. (a), (b) Precipitation multiplication factors for July over the Amazon
(a) and globally (b). (c), (d) Histograms with kernel density estimation and rugplots of July precipitation for the grid cell
indicated by the white cross in (a). The data consist of 2000 years of simulations (blue, EC-Earth) and 32 years of reanalysis
(orange, ERA-I, 1979–2010) for raw EC-Earth simulations (c) and corrected simulations (d).

and PCR-GLOBWB to simulate Amazon flood simu-
lations and conclude that the underestimation of pre-
cipitation in EC-Earth and simplified runoff routing
scheme in PCR-GLOBWB are the dominant sources
of uncertainty. However, these were insufficient reas-
ons to dismiss themonthly flood simulations over the
Amazon a priori (Step 1).

We compare the statistical features of the
2000 years of present-climate Amazon monthly flood
simulations to 30 years of observations, following
(Thompson et al 2017). We find that annual max-
imum streamflow (monthly specific discharge) sim-
ulations are inconsistent with the observations (Step
2). Most notably, simulations show a skewed distri-
bution and long tail that is not present in the observa-
tions. This difference could be caused by infrequent
compound behaviour that cannot be detected well
within the comparatively short observational record.
For example, large floods can be generated by spa-
tially and temporally compounding flows from mul-
tiple sub-regions and months (Marengo et al 2012,
Sena et al 2012, Filizola et al 2014, Zscheischler et al
2020). Hence, model simulationsmay well be realistic
despite being inconsistent with observations.

We correct the monthly flood simulations for the
Amazon using two commonly applied methods to
study the effect of bias correction on conclusions
about unseen events. We show that simulated unseen
Amazon monthly floods are removed by correcting

the simulations to the observations using quantile
mapping, whereas scaling factors may retain such
extremes (by only adjusting the mean and/or stand-
ard deviation of the distribution). Whether or not
the simulated unseen extremes are realistic cannot
be statistically explained; hence physical credibility
should be checked.

We find that the largest simulated monthly flood
is inconsistent with observations and current phys-
ical understanding, because it results from a very large
precipitation bias correction factor during climato-
logically dry months. In this case, correctly repres-
enting spatial-temporal consistency andmulti-variate
dependency (Cannon 2018, Zscheischler et al 2019)
might be more important than avoiding bias cor-
rection, which is in part justified because moder-
ate meteorological events can cause extreme impacts
(Van der Wiel et al 2020). Further advances in high-
resolution dynamical downscaling of large ensemble
simulations may one day obviate the need for such
bias corrections (Huang et al 2020, Ødemark et al
2021).

The example of the Amazon reveals the utility
of physical credibility checks for discerning beha-
viours within model worlds (Step 3). In this case, the
physical credibility check is carried out manually for
single events (evaluating the driver of the largest two
simulated events). To assess multiple events, com-
posite analyses can be used (e.g. Thompson et al

10
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2019, Kelder et al 2020). Furthermore, correlation and
regression methods (Wilks 2011), and causal infer-
ence methods (Runge et al 2019) may prove useful
in systematically evaluating the realism of simulated
drivers for the entire ensemble. Composite analysis of
observed Amazon floods has demonstrated their con-
nection to the ENSO (Marengo and Espinoza 2016).
Nevertheless, for the most extreme floods, whichmay
have unique driving mechanisms, single event ana-
lyses can provide insightful information in addition
to the general, averaged, relationship between floods
and teleconnections obtained from composite ana-
lyses (Towner et al 2020).

The physical credibility check can be applied to
other regions and applications by assessing whether
the atmospheric pattern associated with a given event
is similar to the pattern that might be expected from
observations, or can it be explained from theory?
Answering such questions through regional evalu-
ation of the physical drivers of the largest simulated
impacts can provide insight into the credibility of the
simulations. In this case, we determined that the flood
originated from the southern tributaries, but that the
precipitation is low over this region in the raw cli-
mate model simulations, indicating a discrepancy in
the water balance. We, therefore, concluded the ana-
lysis after determining that the bias correction mech-
anism drives the largest simulated monthly flood. In
other cases, relevant climate anomalies or hydrolo-
gical state variables could be compared with anom-
alies during historical extreme events until the causes
of the event, and its credibility, are fully understood.
For example, Thompson et al (2019) studied unseen
temperature extremes in South East China and found
that variability in the Indian summer monsoon
may cause temperature extremes beyond the current
record.

6. Conclusion

Large-ensemble simulations are increasingly being
used to explore the characteristics of plausible
extreme events (van den Brink et al 2005, Thompson
et al 2017, van Kempen et al 2021). They are also used
to improve the sampling of internal variability over
multi-decadal projections (Deser et al 2020, Lehner
et al 2020,Maher et al 2020,Mankin et al 2020) and to
attribute the causes of high-impact events (Schutgens
et al 2017, Krishnamurthy et al 2018, Van der Wiel
et al 2018, 2019a, Pascale et al 2020, Schlunegger et al
2020, Suarez-Gutierrez et al 2020). However, the use
of large-ensemble simulations to deepen understand-
ing of climate-related risks hinges on the realism of
the simulations. It is, therefore, essential to thor-
oughly evaluate large ensemble simulations to avoid
false confidence in statistical estimates or erroneous
conclusions when model simulations may be wrong
(Stainforth et al 2007). Conventional evaluation and
correction methods are sensitive to observational

uncertainties and natural variability and cannot
determine whether simulations outside observed
variability are correct for the right physical reasons.
Here, we demonstrate a framework for, and illus-
trate the complexities associated with, evaluating and
then correcting simulated impacts outside observed
climate variability. For Amazon monthly flood simu-
lations from EC-Earth and PCR-GLOBWB, we found
large differences between simulated and observed
distributions that could not be statistically explained.
The physical realism must be checked, which, in this
case, showed that the largest simulatedmonthly flood
was an artefact of a bias correction mechanism. We
conclude that there is high sensitivity of the simula-
tions outside observed variability to the bias correc-
tion method, and that physical credibility checks are
crucial to understandingwhat is driving the simulated
extreme events. We, therefore, make a cautionary
remark that bias correction of large ensemble simula-
tionsmight unnecessarily ‘tie’ simulated distributions
to observed distributions, but we discuss how use of
such corrections may be justified to meet the needs of
impact models. We, furthermore, recommend eval-
uating the drivers of simulations outside observed
variability to explain their realism beyond what is
possible from conventional approaches. Uncover-
ing the characteristics of events in the models may
reveal the most important model deficiencies limit-
ing impact analysis which, may in turn, guide future
research. Furthermore, detecting plausible drivers of
extremes beyond observed impacts may improve our
scientific understanding of unknown events and help
provide decision makers with invaluable information
to prepare for unseen impacts.
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