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ARTICLE INFO ABSTRACT

Keywords: In the aftermath of observed extreme weather events, questions arise on the role of climate change in such
Climate change events and what future events might look like. We present a method for the development of physical storylines
Drought 2018 of future events comparable to a chosen observed event, to answer some of these questions. A storyline

Extreme weather
Future weather
Large ensembles
Storylines

approach, focusing on physical processes and plausibility rather than probability, improves risk awareness
through its relation with our memory of the observed event and contributes to decision making processes
through their user focus. The method is showcased by means of a proof-of-concept for the 2018 drought in
western Europe. We create analogues of the observed event based on large ensemble climate model simulations
representing 2 °C and 3 °C global warming scenarios, and discuss how event severity, event drivers and
physical processes are influenced by climate change. We show that future Rhine basin meteorological summer
droughts like 2018 will be more severe. Decreased precipitation and increased potential evapotranspiration,
caused by higher temperatures and increased incoming solar radiation, lead to higher precipitation deficits and
lower plant available soil moisture. Possibly, changes in atmospheric circulation contribute to increased spring
drought, amplifying the most severe summer drought events. The spatial extent of the most severe drought
impacts increases substantially. The noted changes can partly be explained by changes in mean climate, but
for many variables, changes in the relative event severity on top of these mean changes contribute as well.

1. Introduction Storylines, defined by Shepherd et al. (2018) as “physically self-

consistent unfoldings of past events or of plausible future events”, improve

In the aftermath of an extreme weather or climate event, commonly
questions arise concerning the influence of climate change on the event.
These questions are often related to event probability: “Has the event
become more or less likely due to climate change and will events
like this become (even) more (or less) likely in the future?”. But also
questions related to the physical processes leading up to the event and
its severity are often asked: “How did this event come together and
how bad will future events be?”. Scientific studies seeking to answer
these questions, i.e. observed event-based studies, have the advantage
that they link future climate change projections to human experiences
and memories. The results and implications may therefore be better
understood than more abstract climate change projections (Shepherd
et al., 2018; Sillmann et al., 2019). Here, we aim to develop a method
to answer such societal or user questions. By defining simulated event
analogues in present-day and future climate conditions, following a
so-called storyline approach (Hazeleger et al., 2015; Shepherd et al.,
2018), we compare an observed event to possible future events and
identify relevant differences.

* Corresponding author.
E-mail address: wiel@knmi.nl (K. van der Wiel).

risk awareness through offering episodic knowledge! and strengthen
decision making processes through their focus on user-relevant is-
sues (Hazeleger et al.,, 2015; Shepherd et al.,, 2018). The strength
of storylines lies in the focus on understanding, and plausibility, of
the (physical processes leading to the) event of interest. Estimates of
probability or likelihood are often not provided, though many users will
also have a strong interest in information on event probability. There
is some ambiguity regarding the word ‘storyline’ in the climate science
literature. We take an event-based approach, and use IPCC’s definition
of what is an extreme event: “An extreme weather event is an event that
is rare at a particular place and time of year. ... When a pattern of extreme
weather persists for some time, such as a season, it may be classed as an
extreme climate event, especially if it yields an average or total that is itself
extreme (e.g., drought or heavy rainfall over a season)”. IPCC (2014). The
resulting storylines describe physically plausible future events that are
in some pre-defined way comparable to an observed event of interest,
these may then be used to inform policies or stress-test systems.

1 One of two classes of memory defined by Tulving (1972): semantic knowledge is factual information, episodic knowledge is memory of past events.
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There are two main methods for creating event-based storylines
using climate models: performing simulations in which a model is
constrained to reproduce certain aspects of the observed event, or
alternatively, selecting analogues of the observed event from uncon-
strained model simulations. We apply the second method, and construct
event analogues by selecting similar simulated events from existing
large ensemble climate model simulations. The selection of events will
be done based on a quantitative event metric to ensure robust and
unbiased selection. Ideally this metric is closely related to observed
impacts and relevant to users, which is important because extreme
meteorological conditions do not necessarily map onto extreme natural
or societal impacts (Van der Wiel et al., 2020). The resulting storylines
provide insights into future events like the observed event, but these
can potentially be driven by different meteorological (dynamical) con-
ditions or result in more/less severe societal or natural impacts. The
alternative method, sometimes referred to as nudging or Pseudo Global
Warming experiments (PGW, Schér et al., 1996), ensures dynamic event
similarity. However, the best method of perturbation of thermodynam-
ics or boundary and initial conditions is still under debate (Sillmann
et al.,, 2019) and forced changes in event circulation patterns are, by
design, not considered (Faranda et al., 2020). Rare event algorithms
which apply importance sampling in climate modelling (Ragone et al.,
2018; Yiou and Jézéquel, 2020; Ragone and Bouchet, 2020) possibly
sit between the above two methods, through their focus on dedicated
modelling of extreme events.

A proof of concept for our developed method is provided by means
of a case study on the exceptionally hot and dry European summer
of 2018 (‘Drought’18’ hereafter). The summer of 2018 was extremely
warm and dry in western Europe (Fig. 1), impacting agriculture, ecosys-
tems, river transport and recreation (Ecorys et al., 2018; Philip et al.,
2020b; Zscheischler and Fischer, 2020). A positive phase of the North
Atlantic oscillation, global warming and for part of the summer a
circumglobal near-stationary Rossby wave led to persistent warm and
dry conditions (Drouard et al., 2019; Kornhuber et al., 2019). The
likelihood and severity of this event has been shown to increase in
response to anthropogenic climate change (Philip et al., 2020b; Wehrli
et al., 2020; Zscheischler and Fischer, 2020), which is in line with
regional projections of drought under global climate change (IPCC,
2013; Samaniego et al.,, 2018; Spinoni et al., 2018). Following the
storyline rationale, we investigate the physical processes leading to
the Drought’18 in the Rhine basin and evaluate how these change in
warmer future climates. The analysis is mostly limited to meteorolog-
ical drought processes, though soil moisture impacts are considered.
Users’ personal memories of the event (i.e. episodic knowledge), maybe
of yellowing lawns, agricultural losses and shipping difficulties (Ecorys
et al., 2018), will help them put our results in context. The storylines
will contribute to answering user questions like “How much worse
can droughts get (e.g. more severe, more wide spread, longer in du-
ration)?”, and therewith aid decision making for sustainable climate
change adaptation in the region.

In this paper, we describe and apply a method for creating robust
event-based storylines using large ensemble climate model simulations.
We construct analogues of a chosen observed extreme event using large
ensemble simulations of different states of global climate, the event
analogues in different climatic states are then compared to provide
event-specific climate change information. The analogue construction
procedure, including relevant considerations, assumptions and mod-
elling choices, is described in Section 2. The results are split in a
comparison of the observed event to Drought’l8 analogues in the
present-day climate (Section 3.1), a description of Drought’l8 ana-
logues in warmer climates (Section 3.2), and a comparison of the trends
in our climate model to trends in a multi-model ensemble (Section 3.3).
In the Discussion (Section 4) we discuss lessons learned with regards
to the large ensemble-based storyline method, finally conclusions on
future summers like Drought’18 are provided in Section 5.
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Table 1

Three metrics for event selection.
Metric Time series Period Statistic Selection
M1 PR deficit August-October Mean value Highest
M2 PR deficit June-August Regression slope Highest
M3 PR deficit April-October Temporal correlation Highest

2. Method

2.1. Event definition

To allow an unbiased selection of similar simulated events, the
observed event of interest and all simulated events have to be compared
quantitatively (Sillmann et al., 2019). This quantitative comparison
helps to select events in an objective manner and avoids cherry picking
of simulated events. We define a metric that describes the event of
interest by choosing a variable and its spatial and temporal properties.
Once the event definition is formulated, event selection from model
simulations is done by means of maximum similarity to the observed
event. The metric choices can be somewhat arbitrary, hence the depen-
dence of the results on event definition and metrics should be analysed.
The methods of event definition and the considerations involved are
similar to those in class-based event attribution studies (Cattiaux and
Ribes, 2018; Philip et al., 2020a; Van Oldenborgh et al., 2021).

We defined the Drought’l8 event by means of a time series of
precipitation deficit in the Rhine basin (Fig. 1a). Precipitation deficit
is a common drought indicator in the Netherlands, and is defined
to be the cumulative difference between potential evapotranspiration
and precipitation in the growing season (April onward), set to zero if
smaller than zero (Beersma et al., 2004; Sluijter et al., 2018; Philip
et al., 2020b). It can be interpreted as a measure of drought somewhere
between meteorological drought (low precipitation) and agricultural
drought (low soil moisture). We use the Makkink formula (De Bruin
and Lablans, 1998) to compute daily values of potential reference
evapotranspiration from 2 m temperature, incoming solar radiation and
surface pressure. The ERAS reanalysis (Hersbach et al., 2020) is used to
characterise the event as it occurred in the real world. Within the ERA5
record (1979-2018) 2018 has the highest peak value of precipitation
deficit, i.e. it is the most extreme event by this measure.

Next, we defined three metrics for event selection based on this time
series (Table 1, Fig. 2), and created future Drought’18 analogues based
on these metrics. The metrics capture different aspects of Drought’18:
metric 1 selects droughts with high values of end-of-summer precipita-
tion deficit (Fig. 2a), metric 2 focuses on the steep increase of deficit in
the months June to August (Fig. 2b), and metric 3 focuses on the precise
seasonal progression of drought including the relative late start of ex-
treme drought conditions (Figs. 1a and 2c¢). Depending on specific user
needs or vulnerability, one metric and hence storyline may be more rel-
evant than others. Note that our analogues are ‘hazard-analogues’, sim-
ilar in terms of meteorological extreme (i.e. meteorological drought),
not analogues in terms of atmospheric circulation.

2.2. Large ensemble climate model simulations

Generally, the interest in event-based storylines is for observed
extreme events. Since such events are rare by definition, long climate
model simulations or large climate model ensembles are required to
sample similarly extreme simulated events. Large ensemble experi-
ments, consisting of many repetitions of the same experiment (Deser
et al., 2020), allow the direct analysis of extreme events without the
need for statistical extrapolation of the tail of the distribution (Van der
Wiel et al., 2018, 2019). This is a requirement for our physical based
storyline approach, since we are interested in creating storylines de-
scribing the physical processes involved in the event, this information
cannot be obtained by statistical extrapolation.
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Fig. 1. Precipitation deficit [mm] during the 2018 drought. (a) Rhine basin mean time series in blue and associated climatology in grey/black (10-25-50-75-90th percentiles). (b)
Map of August-October mean precipitation deficit anomaly [mm] in shaded colours, Rhine basin outlined in grey. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

{a) M1: mean value
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Fig. 2. Schematic diagram of the three metrics for event selection. The Rhine basin mean time series of precipitation deficit [mm] during the 2018 drought in blue, grey shading
shows the period of evaluation, black dotted line the measure considered by the metric. (a) Metric 1, mean value of precipitation deficit over August-October, (b) metric 2,
regression slope of precipitation deficit from June-August, (c) metric 3, temporal correlation (Pearson’s r) of the precipitation deficit time series from April-October. All metrics
computed based on daily data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

A slight advantage of the selection method over nudged or PGW
simulations, is that it can be based on existing climate model data sets.
Several large ensemble data sets are available, for example in the Multi-
Model Large Ensemble Archive (Deser et al., 2020). The event selection
method is therefore less computationally expensive, and can thus be
applied more routinely, and potentially within a shorter time frame if
analysis time is of relevance (as in rapid attribution studies, Stone and
Hansen, 2016; Van der Wiel et al., 2017; Van Oldenborgh et al., 2021).

Here we used large ensemble simulations (Van der Wiel et al., 2019)
created using the EC-Earth global coupled climate model (v2.3, ~100
km horizontal resolution; Hazeleger et al., 2012). Three ensembles of
2000 model years each are available, each representing a different state
of global climate. The present-day experiment has an absolute global
mean surface temperature (GMST) similar to that observed in 2011-
2015; the 2C and 3C-warming experiments have an absolute GMST
2 and 3 °C warmer than observed pre-industrial temperatures (1851—
1899), respectively. A more detailed description of experimental setup
is provided in Van der Wiel et al. (2019).

We construct simulated analogues of the observed event by selecting
the 20-most similar simulated events from each large ensemble and
taking the composite mean. For each of the 2000 simulated years we
compute the metrics defined in Section 2.1 and select the 20 highest
scoring events. These are the years with highest August to October
mean precipitation deficit (metric 1, Fig. 2a), the years with steepest
increase of precipitation deficit between June and August (metric 2,

Fig. 2b), or the years that have the most similar seasonal progression,
i.e. highest temporal correlation coefficient, (metric 3, Fig. 2c). We
investigate composite means to bring out the climate change signal and
limit the influence of random weather noise. Our choice to build the
analogues from 20 events is a compromise between increasing event
return period and reducing noise. We performed a sensitivity analysis
to show the considerations involved in this choice (Appendix A). In gen-
eral, the larger the ensemble of simulated data, the higher the chances
of finding multiple comparable simulated events to the observed event
(in terms of event characteristics, severity and return period). This
then allows the building of an analogue using more events, which
improves the chance of finding a robust, coherent and interpretable
climate change signal. The composite analogues for the three metrics
are analysed individually, this allows us to investigate the dependence
of the result on the method of event selection.

The analogues are used to investigate how event severity, event
drivers and physical processes are influenced by further climate change.
Before doing so, we checked if EC-Earth was fit for purpose by analysing
model biases in the seasonal cycle of relevant variables. It is not
possible to directly evaluate model bias in the extreme events of
interest given the short observational record with a limited number of
such events (Wagener et al., 2010; Van der Wiel et al., 2018; Kelder
et al., 2020). Regionally in Europe, EC-Earth is too cold and too wet
in spring and summer (Hazeleger et al., 2012), which results in an
underestimation of precipitation deficits in the Rhine basin (Fig. 3a).
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Fig. 3. EC-Earth model evaluation based on 10-25-50-75-90% percentiles. In
grey/black shading ERAS data (40 years), in purple lines EC-Earth present-day model
simulations (2000 model years). (a) Precipitation deficit [mm] in the Rhine basin, (b)
the same but showing anomalies rather than actual values. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

When removing the climatological mean bias, model variability in
precipitation deficit is close to observed variability (Fig. 3b). We will
therefore select events and analyse physical processes based on daily
anomaly values, these are computed using the observed climatology
for observational data and the model climatology for model data.
Climatologies are computed using all available years (1979-2018 for
ERAS, or 2000 years for the model data) and by applying a 15-day
running mean.

2.3. CMIP6 comparison

Generally, multi-model experiments perform better than single-
model experiments (Reichler and Kim, 2008), and hence it would
be good to repeat the event-analogue study using the models in the
CMIP6 archive. Unfortunately, this is not possible since CMIP6 does
not contain the large ensemble experiments required to select enough
comparable events. As an alternative, we compared the climate change
response of the EC-Earth model to that of the CMIP6 archive. Because
the EC-Earth ensembles were defined by means of absolute GMST
(Section 2.2), we compared similar GMST-based periods in the CMIP6
archive using 35 historical+SSP5-8.5 experiments® (Kriegler et al.,
2017) available on the ETH server (Brunner et al., 2020). For each

2 Models included (one member each): ACCESS-CM2, ACCESS-ESM1-5,
AWI-CM-1-1-MR, BCC-CSM2-MR, CAMS-CSM1-0, CanESM5-CanOE, CanESM5,
CESM2, CESM2-WACCM, CIESM, CMCC-CM2-SR5, CNRM-CM6-1, CNRM-
ESM2-1, EC-Earth3, EC-Earth3-Veg, FGOALS-f3-L, FGOALS-g3, FIO-ESM-2-0,
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model, we selected the 30-year period of present-day GMST and the
30-year period of 3C-warming GMST, and computed the changes in
the distribution of monthly temperatures and precipitation. We then
compared the changes in the EC-Earth ensembles to the range of
changes found for the 35 CMIP6 models.

3. Results
3.1. Comparison of present-day analogue and observed event

We calculate the event metrics for all years in ERA5 and in the EC-
Earth present-day large ensemble (Fig. 4a,b). Measured by metrics 1
and 2, the Drought’18 event is the most extreme in the reanalysis
dataset (metric 3 does not aim to capture drought severity). For these
metrics, three summers in the EC-Earth present-day large ensemble are
more extreme than the observed event, this shows that large ensemble
data is indeed needed to capture events of comparable severity or
return period to the observed event. We select the 20 simulated events
that score highest or are most extreme in each metric and compute the
composite mean analogue of the observed event. All analyses will be
done for the three metrics separately, to allow a sensitivity analysis
into the dependence of the results on the method of event selection.

Fig. 4c,d show time series of precipitation deficit anomalies for
the observed event (ERA5) and the 20 individual selected simulated
events (EC-Earth). For both metrics (and metric 2, not shown here)
the selected model events follow the observed seasonal progression of
Drought’18. As may be expected, events selected by means of metric 1
have higher absolute precipitation deficit anomalies and events selected
by means of metric 3 remain closer to the observed seasonal progres-
sion, for example by capturing the relatively low deficits from April to
mid-June. Each of the metrics captures a unique part of the observed
Drought’18 event and there is no metric that outperforms the others in
an obvious way. Note that there is quite some overlap in the selection
of simulated summers for the different metrics: comparing two metrics
nine or ten of the selected summers are the same, five summers were
selected for all three metrics.

Next we compare time series of different drought-related variables
of the observed event and the simulated composite analogue. The
Drought’18 event was characterised by below normal precipitation
(Fig. 5¢) and above normal potential evapotranspiration (Fig. 5d). The
latter is the result of higher than normal 2 m temperatures and higher
than normal incoming solar radiation (Fig. 5e,f). The combination
of low precipitation and high potential evapotranspirations leads to
a higher than normal precipitation deficit (Fig. 5a) and lower than
normal plant available soil moisture, here shown by means of the soil
wetness index® (SWI, Fig. 5b). This has consequences for the surface
heat fluxes, in the summer months the latent heat flux is lower than
normal, resulting in a higher than normal sensible heat flux (Fig. 5g,h).
The analogue shows the same characteristics as the observed event,
though the time series of the observed event are more variable than the
time series of the analogue. This is a result of the composite method
that is used for the creation of the analogue, natural variability for
20 events (analogue, composite mean) is smaller than for one event
(observed event). For all variables the observed event lies within the
envelope of variability of the 20 individual selected simulated events,
taking into account some random temporal shifts for e.g. temperature

GFDL-CM4, GFDL-ESM4, GISS-E2-1-G, HadGEM3-GC31-LL, HadGEM3-GC31-
MM, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G, MIROC6, MIROC-
ES2L, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NESM3, NorESM2-MM,
UKESM1-0-LL.

3 The soil wetness index (SWI) represents the fraction of total plant avail-
able water, it is the scaled soil moisture amount between permanent wilting
point and field capacity (Aalbers et al., 2021).
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Fig. 4. (a,b) Histograms of the selection metrics for ERAS5 in grey and the EC-Earth present-day ensemble in purple. The blue dot shows the 2018 event in ERAS5, purple dots show
the 20 selected simulated events. (c,d) Time series of precipitation deficit anomalies for the observed event in blue and the 20 selected simulated events in purple. Grey/black
shading shows the observed climatology, as in Fig. 3b. The horizontal black bar shows the selection period. Each column shows the result of a different event selection metric,
left for metric 1 and right for metric 3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and radiation, and temporal variability of the observed event is com-
parable to the temporal variability of individual selected model events.
Fig. 5 shows the analogue created using selection metric 1, similar
agreement between observed event and analogues is found for the other
event selection metrics not shown here.

Given the high degree of similarity between the Drought’18 simu-
lated analogues and the observed event, we have confidence that we
can use the analogue approach in conjunction with the EC-Earth large
ensembles for a study of large-scale droughts in western Europe. We
accounted for model biases by investigating anomalies (Section 2.2),
indeed our results show that the climatological state of the model is
not completely relevant, rather it is the variability around this state
that matters. However, if there are thresholds in the system, e.g. for soil
wetness which cannot go below a certain value, the climatological bias
may negatively impact the temporal development of anomalies. We will
continue to investigate the effects of climate change on event severity,
event drivers and the physical processes causing and contributing to
the event.

3.2. Drought’18 under 2 °C and 3 °C global climate change

We repeat the event selection procedure for the 2C- and 3C-warming
large ensembles of the EC-Earth model. As for the present-day ensem-
ble, we compute the event metric for all years in each ensemble, select
the 20 most similar or most extreme simulated events and compute the
composite mean analogue.

The Drought’18 analogue has a higher absolute precipitation deficit
in the 2C- and 3C-warmer climates than in the present-day climate
(Fig. 6a—c). This intensification of future drought is found independent
of the event selection metric. The timing and magnitude of largest
changes do however depend on the method of event selection. For fu-
ture Drought’18 analogues selected by means of metric 1, lower precip-
itation and higher potential evapotranspiration from April through to
August lead to a significant increase of precipitation deficit (Figs. 6a,d,g
and S3). The dry conditions in April and May are due to a high pressure
system centred over the United Kingdom (Fig. 7a). For the future events
this high pressure system is slightly larger, amplifying drought condi-
tions: the spring months are drier, warmer and sunnier (Figs. 6d,g,j
and S3). This dry start of the event is then amplified by warm and dry
summer months (Fig. 6d,g8,j). The precipitation deficit increases, and
does so at a higher rate in the future analogues than in the present-day
analogue (Fig. 6a). This summertime enhanced drying cannot be related
to a strengthening of the high pressure system (Fig. 7d), we only find
a slight southeastward displacement of the high pressure system. From
September onward the future events are wetter than the present-day
event, this may be related to weaker high pressure conditions at the
end of summer (Fig. 7g).

The described climate change signal in the spring months for ana-
logues constructed using metric 1 is not found when analogues are
selected by means of metrics 2 or 3 (Fig. 6b,c). This can, at least partly,
be explained by the absence of an high pressure system (Fig. 7b,c),
consequently both anomalies of precipitation and potential evapo-
transpiration and the changes therein are small (Figs. 6e,fh,i and
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S3). Instead, future Drought’l18 analogues selected by metric 2 are
characterised by very warm and sunny conditions in June, July, and
August (Figs. 6k and S3). Higher values of potential evapotranspiration
(Figs. 6h and S3), lead to a faster increase of the precipitation deficit
in the future analogues than in the present-day analogue (steeper line
in Fig. 6b), resulting in a higher absolute precipitation deficit and an
earlier peak of precipitation deficit. This change is not due to a change
in circulation patterns (Fig. 7e,h), a possible explanation may be found
in a positive feedback through high values of sensible heat flux (Fig.
S3).

Future Drought’18 analogues selected by metric 3 show an absolute
increase in precipitation deficit (solid lines in Fig. 6¢) due to climatolog-
ical mean changes (Fig. S4), we find no drought intensification beyond
that change (dashed lines in Fig. 6¢). This may be caused by the method
of event selection; for metric 3 we selected analogues based on the

temporal correlation between simulated precipitation deficit anomalies
and the observed event, faster increases of precipitation deficit, as
found for the other analogues, are penalised and are therefore less
likely to be selected. This metric and analogue may therefore not be
as suitable for providing information on future changes in physical
processes and event severity. The long-lasting drought conditions of
the observed Drought’18 event (until November, Fig. 5a) is captured
best by metric 3. The analogue selected by metric 3 remains driest
in September and October (Fig. S1), this dry end of the summer is
amplified in the 2C- and 3C-warming analogues (Figs. 6¢ and S2).

We have described the effects of future climate change on the
variables leading to meteorological drought conditions, next we shortly
analyse the impact of these future Drought’18 events on plant available
soil moisture. Increased future precipitation deficits lead to an absolute
decrease of available soil moisture (Fig. 8a-c). A large part of this
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change is due to a climatological mean change to lower SWI values
(from June onward, Fig. S4). Lower soil moisture values lead to a
reduced latent heat flux and increased sensible heat flux (Fig. S3),
potentially contributing to increased probabilities of heatwaves and
enhancing drought conditions. If we compare SWI values of future
Drought’18 analogues to their ‘own’ future climatology (grey line and
dashed coloured lines in Fig. 8a—c), we find that the analogues selected
with metrics 1 and 2 lead to relatively more intensive soil moisture
drought conditions in spring, but relatively less intensive soil moisture
droughts at the end of summer. The distinction between changes in
mean climate and changes in event severity on top of this change in
mean climate can help inform the design of adaptation policies. The
dry end of summer captured in the analogue of metric 3 means soil
moisture recovery is slower, the soil moisture drought conditions last
longer and are more severe in the future analogue.

The spatial extent of area experiencing drought conditions in the
present-day Drought’18 event is not limited to the Rhine basin, though
the most extreme SWI values are found there (Fig. 8d-f). This area,
e.g. quantified by SWI values lower than the 10th percentile, in-
creases substantially for future Drought’18 events (Fig. 8g—i). Again,
this change can for a large part be explained by a climatological mean
change towards lower SWI values.

3.3. Intermodel comparison of mean climate change response

The results of the analyses in Section 3.2 depend on the specific
climate change response of the EC-Earth model during drought events.
To put these results in context of other global climate models, we
compare the EC-Earth climate change response to that from 35 models
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in the CMIP6 archive. We focus on spring and summer 2 m temperature
and precipitation in the Rhine basin as these have been shown to be
most relevant for the Drought’18 summers (Fig. 9). For these variables
and months the EC-Earth large ensembles fall within the 25 to 75% per-
centile range of the CMIP6 response, indicating that our ensembles do
not display unique or unexpected behaviour. This gives us confidence
that our results, though based on a single climate model, provide a
fair look into future Drought’18 events under additional climate change
forcing. It is not feasible to repeat the analogue creation procedure for
all models in the CMIP6 archive, the method requires a large ensemble
of simulations to be available for each individual model, rather than an
ensemble of different models.

The CMIP6 models show warming in all seasons, with stronger
warming in summer than in spring (Fig. 9a—c). Furthermore, the warm
tail of the distribution warms more than the median and cool tail. EC-
Earth warming falls between the 25th and 50th percentile of CMIP6,
from June to September it also shows higher warming in the warm
tail, this agreement is not found in the spring months. The sign of
spring precipitation change is uncertain, EC-Earth very closely follows
the CMIP6 median response (Fig. 9d—f). In June-July the dry tail of
precipitation dries by about 20% in CMIP6, the August-September
response is comparable though slightly more modest. For both periods
EC-Earth very closely follows the median response.

The temperature change in the Drought’18 analogues corresponds
most closely with the warm tail of the CMIP6 changes, as might have

been expected (Fig. 9a—c). As noted earlier, metric 3 warms the least
in the early summer, though it shows slightly stronger warming at the
end of summer than the other metrics. In terms of precipitation change,
metrics 1 and 2 fall at the lower end of the CMIP6 range in April-May
(Fig. 9d) and correspond to the CMIP6 median change of the dry tail in
June-July (Fig. 9e). The dry end of summer for metric 3 corresponds to
the dry tail of CMIP6. The 3C-warming analogues based on metrics 1
and 2 have close to normal precipitation in September (Figs. 6d,e and
S3), it is therefore not expected that the climate change response agrees
with the dry tail of the distribution. Compared to the CMIP6 ensemble,
EC-Earth is a middle-of-the-road model in terms of its climate change
response in these variables. Likely therefore there are models that have
stronger responses in their Drought’18 analogues, with larger increases
of precipitation deficits and larger decreases in available soil moisture
than noted in Section 3.2.

4. Discussion

We have presented a method for the creation of simulated analogues
of observed events from large ensemble climate model data, and used it
to create physical storylines of future Drought’18 events. This method
of storyline development complements the alternative method of dedi-
cated nudging or PGW experiments (as for example Wehrli et al. (2020)
and Aalbers et al. (2021) have done for the summer of 2018). In this
section we will discuss the strengths and limitations of our method,
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focusing on event definition, event return period and the physical
self-consistency and plausibility of the storylines.

The present-day analogues of Drought’18 share many of the same
features as the observed event, which provides us with confidence that
the method works satisfactorily. The analogue events are warm, dry
and sunny, resulting in high precipitation deficits and low soil water
availability. When the different selection metrics are compared, we
note subtle differences in event timing or severity, which also prop-
agate into subtle differences in the climate change response (e.g. the
intensification of spring drought found for metric 1 only). As noted
in Section 2.1 this dependence on event definition is unavoidable and
should be investigated and noted. We have chosen here to discuss three
storylines, each based on a different selection metric, and note the
similarities, the differences and the origin of these differences. We have
interpreted similarities in climate change response between storylines
as robust changes, and interpreted differences in the response as areas
where further research is needed.

It is not obvious whether one of the three storylines presented here
is more plausible or more relevant than the others, or whether there

are theoretical restrictions to the choice of selection metric. Though
metric 3, based on a temporal correlation, does not allow as much free-
dom in finding changes in event severity as the other metrics. Metrics
close to societal or natural impacts increase user relevance (Hazeleger
et al., 2015; Van der Wiel et al., 2020), the metrics in this study capture
similar meteorological hazards. These storylines provide information
on future hazards and associated risk and investigate the variety of
weather conditions leading to the impact of interest (Van der Wiel
et al., 2020). It is up to a potential user which metric is most suitable: a
farmer with a crop particularly sensitive to drought conditions in high
summer would likely choose metric 2, someone interested in vegetation
states, which respond to the most extreme meteorological droughts,
would likely choose metric 1. If instead one chooses for metrics that
maximise, for example, (meteorological) similarity in time, as metric 3
or in nudging/PGW experiments, the climate change effects in terms of
changing hazards and risk may be underestimated. This discrepancy
is likely to be larger when event circulation patterns are subject to
change (for droughts e.g. changes in persistence of weather systems,
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Mann et al., 2018; Pfleiderer et al.,, 2019), or if there are positive
feedback mechanisms that may intensify future events (for droughts
e.g. through the sensible heat flux, Fischer et al., 2007; Schumacher
et al., 2019).

The created analogues should be of comparable return period or
severity as the observed extreme event. The climate change response
of extreme events with high return period is not always the same
as that of events of lower return period (Appendix A, Van der Wiel
et al., 2018, 2019). Hence a difference in return period between ana-
logue and observed event may negatively influence the quality of the
results. In practise this is why large ensemble data are required, as
these are more likely to contain the relevant extreme events. Here we
selected 20 simulated events and took the composite mean to create
an analogue. Selecting more events would have reduced the influence
of natural variability in event specifics (noise from unrelated weather),
but meant we would have lower return period and may have impacted
the results negatively. Vice versa, selecting less events would have
increased the return period (better matching the extreme event of inter-
est), but would have increased the noise due to natural variability and
thus decreased the robustness and interpretability of the results. This
balance between reducing noise from natural variability and increasing
return period should be carefully considered, sensitivity analyses such
as those in Appendix A can provide insight in the influence of these
choices on the results. The sensitivity analysis here emphasises that
large ensemble simulations are a strict requirement for the proposed
storyline method by event-selection, they are necessary to adequately
capture the event return period and sample natural variability. Note
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that the variability of individual events within the analogues can also
be of interest. Information of different pathways/weather leading to a
common impact or matching a common selection metric (e.g. Van der
Wiel et al., 2020), and the changes therein due to climate change, may
inform user preparation or adaptation.

The physical-consistency of the presented storylines is ensured by
their source. Global coupled climate models describe the physical re-
lations between different components of the climate system and are
physically self-consistent by definition. However, in cases where cli-
mate models show discrepancies with observed processes or observed
trends, the plausibility or accuracy of the storylines cannot be as easily
assured. Relevant to our study, further research and possibly model
development is needed for example to align observed and modelled
trends in heatwaves in Northwestern Europe (Min et al., 2013; Vautard
et al., 2020), and to align observed and modelled tail dependence
for correlated hot-and-dry compound events (Zscheischler and Fischer,
2020). Improvements in the realism of simulated summer weather
conditions would improve the accuracy of our storylines. Furthermore,
the climate simulations did not include dynamic vegetation, drought
feedbacks involving vegetation (Wramneby et al., 2010) are thus not
included. Including dynamic vegetation in climate simulations would
improve the accuracy of the results.

Finally, we note that the presented method may also be applied to
other extreme weather events than summer droughts (e.g. heatwaves,
cold waves, or large-scale extreme rainfall events). Since droughts
develop over time, we fixed our selection procedure to certain cal-
endar months, but analogue selection can be broadened by allowing
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shifts in time or space, therewith reducing the necessary ensemble
size. The main scientific advantage of the selection method over the
nudging/PGW methods is the fact that possible positive feedback mech-
anisms and event circulation changes are taken into account and the
results are therefore more generally applicable. An additional practical
advantage is the fact that no dedicated experiments have to be cre-
ated and the selection method can be applied with limited additional
computational costs. Do note that global coupled climate models have
a relatively coarse resolution, meaning not all extreme events are
resolved adequately (e.g. Pascale et al., 2016; Van der Wiel et al., 2016;
Pilo et al., 2019). Storyline creation for such events are therefore not
possible using the analogue selection method on global coupled model
data. The PGW method, using regional climate models, may allow such
analyses.

5. Conclusions

The aim of this work was to develop a method for the creation of
physical storylines of future extreme events similar to observed events
based on large ensemble climate model data. A storyline approach,
focusing on physical processes and plausibility rather than probability,
improves risk awareness through its relation with our memory of
the observed event (episodic knowledge) and contributes to decision
making processes through their user focus (Hazeleger et al., 2015;
Shepherd et al., 2018). As a proof of concept, we created analogues of
the 2018 western European drought event for three different states of
global climate, one like the present-day climate and two warmer future
scenarios (2 °C- and 3 °C-warmer than pre-industrial). These were used
to describe future event characteristics and compare these to the event
as it occurred, and contribute to answering user questions like “Will
droughts take a different form in the future?” or “How much worse
can such droughts get?”.

We have shown that future events like Drought’18 in the Rhine
basin are likely to become more severe in a warmer future, in agree-
ment with existing general projections of drought (e.g. Samaniego
et al., 2018; Spinoni et al., 2018). Increased drought severity is caused
by decreased precipitation and increased potential evapotranspiration
(due to higher temperatures and increased incoming solar radiation).
The timing and strength of relevant future changes are somewhat
dependent on the precise event definition. For example, when focusing
on high end-of-summer precipitation deficit, an amplified high pressure
system in spring kick-starts the drought, a driver of drought that may
increase in a warmer future (see also Haarsma et al., 2015; Van der Lin-
den et al., 2019). Instead, when focusing on the temporal development
of precipitation deficit during the entire growing season, no circulation
effects are found and future drought intensification is the result of
climatological mean changes alone. The latter storyline is probably
closest to the results of Aalbers et al. (2021) who performed a PGW
experiment for the Drought’18 event. By design a PGW experiment has
no circulation response beyond climatological mean changes, and both
methods find, for example, a small increase in precipitation in spring.

The storylines further show that future events like Drought’18 lead
to significantly lower plant available soil moisture. Between June and
November this can for a large part be explained by a climatological
mean reduction of available soil moisture. Taking into account these
mean changes, two of our storylines show that future droughts lead
to relatively lower available soil moisture in the spring months (i.e. in-
creased spring agricultural drought), but relatively higher available soil
moisture at the end of summer. The analogue with dry conditions con-
tinuing into autumn shows comparable soil moisture drought intensities
in the future also at the end of summer. The spatial extent of future
events is significantly larger than the event in its present-day form, also
here we find that this is mostly the result of changes in the soil moisture
mean climatology.

The changes in drought severity and extent are larger in a world
with 3 °C warming than in a world with 2 °C warming. Climate change
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mitigation will thus help to limit the societal and natural impact of
future drought events somewhat. Societal adaptation to on average
drier conditions (higher mean precipitation deficits and lower mean
plant available soil moisture) and more severe drought events (addi-
tionally higher peak precipitation deficits and lower peak soil moisture
availability) is inevitable if impacts are to be limited to present-day
levels.

For users, it is the societal and natural impacts rather than the
hazard of future droughts that are relevant. Hence studies investi-
gating such future impacts, including options for adaptation or mit-
igation, are required. From a meteorological perspective, the role of
future circulation changes in drought severity (Haarsma et al., 2015;
Van der Linden et al.,, 2019), especially during the spring months,
remains unclear. Finally a technical comparison between the PGW
method and the analogue method used here is of interest. A PGW
experiment for Drought’18 gives qualitatively comparable results as
presented here (Aalbers et al., 2021), but a quantitative comparison
would provide insights in the strengths and weaknesses of the two
methods.
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Fig. A.1. Present-day analogue time series for two sensitivity experiments. Shown are the analogues from the eight small ensembles in grey, the original analogue in black (as

in Fig. 5 of the main text), and the observed event in blue. (Left) same composite size experiment, (right) same return period experiment. Variables shown, anomalies of: (a-b)
precipitation deficit [mm], (c—d) cumulative precipitation [mm], (e-f) cumulative potential evapotranspiration [mm], (g-h) 2 m temperature [°C]. The horizontal black bar in
(a-b) shows the selection period, selection by means of metric 1. A 15-day running mean was applied for 2 m temperature. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

Appendix A. Ensemble size, analogue composite size and analogue
return period

The storylines of future Drought’18 events discussed in this study
are based on analogue events computed from large ensemble climate
model simulations. These analogues were generated by taking the com-
posite mean over 20 selected simulated events that were most similar to
the observed event by some metric. Two of the metrics in the main text
selected the most extreme events, this essentially constrains the return
period of the analogues (taking 20 events out of 2000 years means
these represent roughly 1-in-100 year return period events). In the main
text we noted that “Our choice to build the analogues from 20 events is
a compromise between increasing event return period and reducing noise.”.
By means of a sensitivity experiment we demonstrate this compromise
and the consequences of different choices. It highlights the importance
of having a sufficiently large ensemble to select events from, only then
is it possible to create reliable and robust climate change information.
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We split each full large ensemble of 2000 years in eight smaller
ensembles of 250 years each. Using these eight small ensembles we
repeat the analysis of the main text, we create analogues and investi-
gate changes in event severity and drivers. We do this twice, each time
making a different choice in the aforementioned compromise:

+ Same composite size For each of the small ensembles we created
analogues based on the same number of simulated events as in
the main study, i.e. 20 events. This implies we are looking at
less extreme events here, a rough estimate gives a 1-in-12.5 years
return period event rather than 1-in-100 years.

Same return period For each of the small ensembles we create

analogues based on 2 events, these analogues have approximately
the same return period as those in the main text (roughly 1-in-125
versus 1-in-100 years).
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Fig. A.2. As Fig. A.1 but here showing the climate change signal, 3C-warming analogue minus present-day analogue. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Note that the provided estimates of return period are too simplistic,
and that storylines do not have a probabilistic focus, hence we have
not computed or noted probabilities in the main text.

As expected the ‘same composite size’ experiment results in well
defined analogues, with limited influence of random weather noise in
single events (left column in Fig. A.1). However, the analogue drought
is less severe than the observed event, the original analogue is in better
agreement in this perspective. The ‘same return period’ experiment
does not have this problem, the maximum precipitation deficit of the
new analogues is comparable to that of the original analogue and close
to that of the observed event (right column in Fig. A.1). The new
analogues do however suffer somewhat from noise, which is especially
obvious in the time series of 2 m temperature (Fig. A.1h). This is not
necessarily problem, since the observed event also contains a form of
this noise, but makes comparisons is slightly more difficult. Based on
this analysis we would prioritise analogue return period over analogue
composite size.

If we look at the computed effect of climate change on the event
analogues, we find that the ‘same composite size’ experiment provides
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robust climate change signals (left column Fig. A.2). The signal found
for the different small ensembles is robust, though it is lower than what
was found for the original analogue. This latter effect may be caused
by a non-linear climate change response, where events of low return
period respond differently than events of high return period (Van der
Wiel et al., 2018, 2019). This robustness of the climate change signal is
not found in the ‘same analogue return period’ experiment, here we find
large variability in the climate change signal of different small ensem-
bles (right column Fig. A.2). This is the result of random weather noise,
which clouds the real climate change signal, and makes it impossible
to make reliable statements on the influence of climate change on the
event. Based on this analysis we would prioritise analogue composite
size over analogue return period.

This sensitivity experiment shows the consequences of the different
choices in the development of simulated analogues from large ensemble
climate modelling data. It showcases that a balance, or compromise, is
needed between analogue composite size and analogue return period.
Having a sufficiently large ensemble, such that robust analogues can
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be created for the observed event under consideration, is essential to
provide reliable and robust climate change information.

Appendix B. Supplementary figures

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.wace.2021.100350.
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