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Abstract

Natural disasters in High Mountain Asia (HMA) are largely induced by precipita-

tion and temperatures extremes. Precipitation extremes will change due to global

warming, but these low frequency events are difficult to analyse using (short)

observed time series. In this study, we analysed large 2000 year ensembles of pre-

sent day climate and of a 2 and 3�C warmer world produced with the EC-Earth

model. We performed a regional assessment of climate indicators related to tem-

perature and precipitation (positive degree days, accumulated precipitation, [pre-

and post-] monsoon precipitation), their sensitivity to temperature change and the

change in return periods of extreme temperature and precipitation in a 2 and 3�C
warmer climate. In general, the 2�C warmer world shows a homogeneous

response of changes in climate indicators and return periods, while distinct differ-

ences between regions are present in a 3�C warmer world and changes no longer

follow a general trend. This non-linear effect can indicate the presence of a tipping

point in the climate system. The most affected regions are located in monsoon-

dominated regions, where precipitation amounts, positive degree days, extreme

temperature, extreme precipitation and compound events are projected to increase

the most. Largest changes in climate indicators are found in East Himalaya,

followed by the Hindu Kush and West and Central Himalaya regions. Western

regions will experience drier summers and wetter winters, while monsoon domi-

nated regions drier winters and wetter summers and northern regions a wetter cli-

mate year round. We also found that precipitation increases in HMA in a 3�C
warmer world are substantially larger (13%) compared to the global average

(5.9%). Additionally, the increase in weather extremes will exacerbate natural haz-

ards with large possible impacts for mountain communities. The results of this

study could provide important guidance for formulating climate change adapta-

tion strategies in HMA.
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1 | INTRODUCTION

High Mountain Asia (HMA) is home to the largest reservoir
of fresh water outside the poles and 10 major river basins
originate in this region. The largest water towers of the
world can be found here, of which many are extremely vul-
nerable to climate change (Immerzeel et al., 2020). In total
1.9 billion people are dependent on the rivers' water
resources for irrigation, domestic use and hydropower
(Wester et al., 2019), and water demand will further increase
in the future (Wijngaard et al., 2018; Biemans et al., 2019).

A global average temperature rise of 1.5�C compared
to preindustrial levels implies 2.1�C warming in HMA
(Kraaijenbrink et al., 2017) and extreme scenarios would
even result in a regional temperature rise up to 5.8�C
(RCP8.5; Lutz et al., 2018). Even if the ambitious target of
1.5�C is met, one third of the glacier ice volume would
melt by the end of the century (Kraaijenbrink et al., 2017).
Because of the buffering role of the cryosphere, glacier and
snow melt currently contribute 60% of the water used for
irrigation in the Indus during the pre-monsoon season
(Biemans et al., 2019). A decrease in melt water availabil-
ity could therefore have significant implications for agri-
cultural production, hydropower production and human
health. Asia has the largest occurrence of natural disasters
globally largely caused by hydro-meteorological events. In
Asia in the period 2000–2008 52.3% of economic damages
is caused by meteorological disasters (Vos et al., 2010).

Understanding the effect of climate change on the
magnitude and return periods of extreme precipitation
and temperature events is important for assessing impacts
on hydropower production and occurrence of natural haz-
ards such as floods, land slides, glacier lake outburst floods
and debris flows in HMA (Lutz et al., 2013; Tariq
et al., 2014). Natural risk is the interplay between weather
hazards, vulnerability and exposure of people, infrastruc-
ture and the environment. Extreme weather causes a
weather hazard (e.g., landslide or flood) when something
or someone is exposed to this hazard and is vulnerable
(Aznar-Siguan and Bresch, 2019). Extreme events are nor-
mally studied by analysing long time-series or by model-
ling the tail of the distribution with a statistical approach
or extrapolation. Both approaches have limitations as cur-
rent observational records are short (van der Wiel
et al., 2019). Consequently, the statistical significance of
results decreases with increasing return periods and often
relies on an assumption of stationarity. Furthermore,

when extrapolating the tail of the observational record,
assumptions are made regarding the distribution of
extremes, which is uncertain for events with a high return
period and might change in a future climate.

In order to attribute specific events to climate change,
natural climate variability should be disentangled from
human-induced climate change. This is challenging as
both processes together dynamically drive specific weather
events (Trenberth et al., 2015; Hauser et al., 2017). Another
method to investigate future weather is to analyse how
specific current day (extreme) events will change in the
future (Hazeleger et al., 2015). This approach provides
important insights in how climate may amplify specific
extreme events, however such an approach cannot be used
as a probabilistic projection.

An approach to overcome problems with non-
stationarity and limited sample size in CMIP model simu-
lations is to use a general circulation model (GCM) to
generate long time-series of weather variables given a
fixed anthropogenic forcing, by perturbing the boundary
conditions. This method called large-ensemble climate
simulations can provide long time-series of extreme
events in a changing climate and thus provide a unique
opportunity to statistically quantify extreme events with
a low recurrence interval. In this study we use the large
ensemble modelling method in HMA to analyse extreme
events using a 2000 year simulation for present and for a
2 and 3�C warmer world respectively (van der Wiel
et al., 2019).

In this study we focus on analysing differences
between the present-day climate and the 2 and 3�C
warmer world for several climate indicators that control
the cryosphere (glacier and snow melt and snow fall). In
addition, we analyse differences in extreme precipitation
and temperature, which are the key drivers for natural
hazards such as landslides, avalanches and floods. This
work can provide important guidance for formulating cli-
mate change adaptation policies.

2 | METHODS

In order to quantify meteorological extremes, data from
three large ensembles were analysed: for present day
(PD) climate and for a two degrees (2C) and three degrees
(3C) warmer world. The large ensembles are performed
with the fully coupled EC-Earth global climate model
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v2.3 (Hazeleger et al., 2012). The EC-Earth model config-
uration is the same as in Coupled Model Intercomparison
Project phase 5 (CMIP5; Taylor et al., 2012). The ensembles
represent three climatic periods with different global mean
surface temperature. The PD ensemble has a global mean
surface temperature equal to the observed temperatures in
the period 2011–2015 (James et al., 2017; van der Wiel
et al., 2019). The 2C and 3C ensembles have a global mean
surface temperature with 2 and 3�C increase relative to the
pre-industrial period (1851–1899).

To generate the large ensembles, a combination of dif-
fering initial conditions and atmospheric perturbations
was used. Initial conditions were provided by 16 long tran-
sient RCP8.5 simulations (1860–2100). From each of these
simulations 25 members were branched off, in which
atmospheric perturbations were introduced by means of
stochastic parameterisations (Buizza et al., 1999). Each
member was integrated for 5 years, we assume no climate
change effects occur in this 5-year period. The large
ensembles thus consist of 16 × 25 × 5 = 2000 years of sim-
ulated data. As noted, the 5-year simulation period for
each large ensemble was chosen based on a target mean
value of global mean surface temperature in the original
transient RCP8.5 simulations (extensive details are pro-
vided in the supporting information of van der Wiel
et al., 2019). The dataset has a global coverage with a spa-
tial resolution of 1.1� and has been used before to assess
extreme river discharge under +2 �C global warming (van
der Wiel et al., 2019) and extreme heat occurrence in India
(Nanditha et al., 2020)

Precipitation was bias-corrected and downscaled to a
0.5� spatial resolution using statistical bias-correction and
bicubic spatial downscaling. Precipitation is adjusted for
drizzle, which is a common problem in global circulation
models (Dai, 2006) and can have significant implications
when analysing droughts and dry spells when not
corrected. The monthly accumulated precipitation of EC-
Earth for each grid cell is matched with monthly sums
and the number of wet days in ERA-INTERIM for the PD
simulations. These correction factors of wet bias cut off
and volume are then linearly interpolated between
months to avoid sudden shifts in bias-corrected precipita-
tion. Afterwards, the average daily interpolated correc-
tion factors are applied to the two and three degrees
warmer large ensembles assuming the model bias in EC-
Earth is stationary in time and space under global
warming. This bias correction is applied stationary in
time, however its real behaviour for the future is
unknown and could be more complex.

Temperature was also bias corrected and downscaled
with ERA-INTERIM data on a pixel level to produce a
0.5� dataset. A statistical bias-correction allows for eleva-
tion corrected downscaling that ensures that monthly

statistics of the PD period match the ERA-INTERIM
monthly averages. By taking the high-resolution tempera-
ture distribution from ERA-INTERIM we can estimate
the sub-pixel distribution for each EC-Earth cell and cor-
rect for regional temperature gradients. Following the
same procedure as for precipitation, we linearly interpo-
late the monthly correction factors to a daily temporal
resolution. All analyses in this paper are performed with
the bias-corrected, downscaled meteorological datasets
using the daily temporal resolution of the simulations.

2.1 | Climate indicators

Various climate indicators are analysed to identify sensi-
tive regions in HMA, which either are important for
cryospheric processes, monsoon water supply and/or
extremes:

1. Positive degree days (PDDs): the annual sum of posi-
tive degrees (T > �C) derived from daily mean temper-
ature. The PDD sum is a measure of the glacier and
snow melt potential.

2. Snow: accumulated precipitation for average daily
temperature below 0�C. This indicator is important
for glacier accumulation, as the total amount of snow
controls the glacier accumulation.

3. Pre-monsoon precipitation: precipitation sum between
April 1 and June 1. During pre-monsoon irrigation is
largely dependent on glacier and snow melt (up to
60% in the Indus basin). Changes in precipitation dur-
ing this season may compensate for a decrease in melt
in the future.

4. Monsoon precipitation: precipitation sum between
June 1 and October 1. Glaciers in the Himalaya are
characterized by synchronous ablation and accumula-
tion regimes and a change in monsoon precipitation
could have implications for the glacier mass balance.
Second, shifts in monsoon strength exert a strong con-
trol on regional water availability.

5. Post-monsoon precipitation: precipitation sum
between October 1 and December 1. The post-
monsoon is typically a dry season and precipitation
changes in this shoulder season are important for agri-
culture and hydropower production.

6. 95th percentile of temperature and precipitation:
Extreme temperature and precipitation events,
defined as the 95th percentile values in the distribu-
tions of daily averaged temperature and precipitation
values. Extreme precipitation and temperature control
landslides, avalanches, floods and heat waves.

7. Compound events: when both precipitation and tem-
perature are higher than their 95th percentile values
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in PD climate. Extreme events with both high precipi-
tation amounts and temperature have implications for
natural hazards such (melt) water floods and
avalanches.

Return periods are calculated using the 2000 year
empirical distribution for precipitation and temperature
for the PD, 2C and 3C scenarios. For the analysis we use
the same regional sub-division as used for the Randolph
Glacier Inventory (RGI; RGI Consortium, 2017; Figure 1).
PDDs and accumulated solid precipitation are only calcu-
lated for glacier grid cells (RGI Consortium, 2017) or for
grid cells that are snow covered for at least a month a year
(Hall and Riggs, 2015).

3 | RESULTS AND DISCUSSION

3.1 | Performance of EC-Earth in HMA

The complex topography in combination with a com-
plex interplay of monsoon and westerly circulation sys-
tems affect the seasonality, amount and spatial
distribution of precipitation in HMA. As a result, there
is a very large spread between different commonly used
gridded datasets (reanalysis, model simulations, satel-
lite or gridded data sets; Palazzi et al., 2013). In the
absence of station data it is therefore impossible to
identify an optimal precipitation dataset to be used as a
reference.

In order to validate the corrected EC-Earth dataset in
HMA the average annual cycle of temperature and pre-
cipitation of 5 year of TRMM (Huffman et al., 2007),
GPM (Huffman et al., 2014), ERA5 data (Copernicus Cli-
mate Change Service, 2017; 2011–2015) and the bias
corrected EC-Earth are shown in Figure 2. Five years
were selected because the PD EC-Earth simulations are
aimed to reflect the current climatology and thus com-
paring to a longer period would lead to inclusion of
trends. By making a spatially aggregated evaluation of
the HMA region, we reduce the effect of local extremes
occurring in ERA5 in those years. For a region-specific
comparison reference is made to Figure S1. Temperature
in both datasets shows good agreement, and the simu-
lated precipitation shows reasonable agreement. The
observed precipitation bias in the bias corrected EC-Earth
dataset is −54% and the temperature bias is −0.3�C com-
pared to ERA5. GPM has a yearly precipitation sum bias
of −11% and TRMM 0%. These biases are well within the
range of uncertainty in temperature and precipitation
over HMA. We therefore conclude that the seasonality of
temperature and precipitation are captured satisfactory
by EC-Earth as was also found in a comparison study
between ERA-INTERIM and (non-bias-corrected) EC-
Earth in a similar region (Palazzi et al., 2013).

The original EC-Earth is wetter compared to different
satellite derived products (Palazzi et al., 2013), while the
bias corrected EC-Earth data are well in line with the sat-
ellite products GPM and TRMM (Figure 2). Comparison
between products is complicated as satellite products

FIGURE 1 Regions for analysis with its topography and glaciers (white, RGI) with S, south; E, east; W, west
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generally underestimate precipitation due to their spatial
resolution and quality (Immerzeel et al., 2015). Since the
bias-corrected EC-Earth falls well within range of other
gridded climate products and correctly captures the sea-
sonality of precipitation we conclude that this product is
suitable to use for climate impact studies in HMA.

3.2 | Changes in mean monthly
temperature and precipitation

Temperature rise is not uniform over the year and regional
differences are present (Figure 3). The global mean surface
temperature in a 2C warmer world is 2�C warmer com-
pared with pre-industrial levels; hence the changes with
regard to PD are logically less than 2�C.

Compared to the global average (1.5 K, 3% increase P),
HMA (1.5 K, 5.2% increase P) is projected to warm at a sim-
ilar rate and is projected to become wetter in a 2C warmer
world compared to PD climate. In a 3C warmer world
regional differences become slightly more pronounced, with
an average temperature rise of 2.9 K in HMA, while 2.7 K
globally. Precipitation increases in HMA are substantially
larger (13%) compared to the global average (5.9%). Regions
with strongest precipitation increases are the Himalayas
(23%), and Hengduan Shan (21%) regions.

The 2C warmer world shows a rather uniform
warming in all regions (1.3 K in Hengduan Shan to 1.7 K
in Hindu Kush), while the 3C warmer world shows dis-
tinct differences (1.4 K in West Kun Lun and 5 K in East
Himalaya). However, regional averages are shown and
the temperature signal in West Kun Lun region for

example is both negative and positive, resulting in a low
regionally averaged temperature increase. A different
sensitivity to processes causing elevation dependent
warming can cause the differences per region (Pepin
et al., 2015). The strongest warming rates can be found in
the south-eastern regions (Himalayas, Hindu Kush and
Hengduan Shan).

Elevation dependent warming is the phenomenon
that the rate of warming generally increases with eleva-
tion and is caused by local mechanisms that amplify
global warming. Important mechanisms are for example
the snow albedo feedbacks and water vapour changes.
The differences in the local importance of each of these
individual mechanisms result in contrasting regional pat-
terns to global warming. In our simulations we can study
the differences in temperature for the different climates
and therefore identity the regions with largest changes in
climate.

Elevation dependent warming is not observed in all
regions of HMA in a 2C or 3C warmer world, however in
specific regions and seasons it is (Figure 3). This could be
an indication that the mechanisms behind elevation depen-
dent warming are indeed region and time specific. Coarse
resolution would not explain this, since previous studies
showed that elevation dependent warming is also resolved
at coarse resolution; however, the relative contribution of
the driving mechanisms may differ in simulations with dif-
ferent spatial resolution (Rangwala et al., 2016; Palazzi
et al., 2019). Physical processes contributing to elevation
dependent warming include snow-albedo feedback, changes
in clouds, sensitivity of downward longwave radiation to
specific humidity and sensitivity of outgoing longwave

FIGURE 2 Average simulated daily temperature (left) and precipitation (right) for 2011–2015 for biascorrected EC-Earth (blue; 5-year

average of 1,000 times random selection of 5 years in the large ensemble) and ERA5 (black). The 5-year average ensemble represents the

spread in outcomes of present day large ensemble. Blue shading indicates minimum and maximum values; the thin line is the standard

deviation
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radiation to surface temperature, aerosols and black carbon
(Pepin et al., 2015). Those processes also interact and can
compensate each other (Pepin et al., 2015; Gao et al., 2018).
In a 3C warmer world elevation dependent warming is
observed in the Hindu Kush, West Himalaya, Central
Himalaya, East Himalaya, Hengduan Shan and Inner,
South and East Tibet. In West and East Kun Lun some sub-
regions experience a temperature decrease, indicating eleva-
tion dependent warming is non-linear and complex. Addi-
tionally to the physical processes, also changes in
circulation (e.g., monsoon strengthening in Himalayas) and
snow cover changes (e.g., Tibet) play an important role in
elevation dependent warming.

For precipitation we observe an overall wetting of
HMA between PD and a 2C and 3C warmer world. We

also observe contrasting seasonal and regional signals. For
example, the monsoon is strengthening in the Himalayas,
while precipitation during the winter is decreasing. As a
result differences between the wet and dry seasons are
increasing (Lutz et al., 2014; Biemans et al., 2019). Overall,
the differences in precipitation between PD and the 2C
and 3C warmer worlds are spatially more heterogeneous
and more profound than the temperature signals.

The Hindu Kush monsoon precipitation is projected to
increase most in a 3C warmer world, which could be
linked to strengthening and further protruding of the mon-
soon (Li et al., 2010). In the north-western regions (Hissar
Alay, Pamir, West Tien Shan and East Tien Shan) winter
precipitation is projected to increase, while summer precip-
itation is projected to decrease. This is likely caused by an

FIGURE 3 Temperature (upper panels) and precipitation (lower panels) anomalies for the 2C (left panels) and 3C (right panels)

warmer world compared to present day climate. Columns indicate the individual months, and y = year average, rows indicate the region.

Mountains are defined as all grid cells above 1,500 m (global)

BONEKAMP ET AL. E969



intensification or increased occurrence of intense cyclones
in winter (Lambert, 1995) and the orographic effect that
results in more precipitation at the leeward side of the
mountains (e.g., the Hindu Kush mountain range). The
decrease in precipitation in a 2C warmer world is likely
caused by the reduced moisture transport from the Medi-
terranean or projected reduced monsoon circulation, while
in the 3C warmer world the intensification of the monsoon
circulation dominates (Christensen et al., 2013). This
reversed signal is also found in model ensemble averages
in the Upper Indus region, with a dominantly drying signal
in 2071–2100 compared to 1971–2000 in RCP4.5, while a
wettening signal in RCP8.5 (Lutz et al., 2016). Precipitation
changes are not linear with global temperature rise; for
example a drying trend during the monsoon months is sim-
ulated in a 2C warmer world in Hindu Kush, Karakoram
and West Himalaya, while the same regions are projected
to become wetter in a 3C warmer world.

The Clausius-Claperyon relation predicts an increase in
precipitation of 6.5% K−1 if precipitation is not constrained
by the amount of moisture or energy (Allen and
Ingram, 2002; Trenberth et al., 2003; Held and Soden, 2006).
Most climate models predict a global mean increase in pre-
cipitation of 1–3%�K−1 (Boer, 1993; Allen and Ingram, 2002;
Stephens and Ellis, 2008; Trenberth, 2011). In this study we
found a global mean precipitation increase of 2%�K−1, which
is in line with the global CMIP projections. The precipitation
increase in HMA is however between 3.5 and 4.6%�K−1,
which is much closer to the theoretical Clausius–Clapeyron
value. The high moisture availability and high temperatures
during the monsoon season likely cause the strong precipita-
tion increase with temperature in HMA.

3.3 | Return periods of temperature and
precipitation

Mean temperature and precipitation are increasing
due to global warming and likely return levels of
extreme temperatures and precipitation too
(Papalexiou and Montanari, 2019; Figure 4). Overall,
the patterns in extremes are indeed in line with the
annual trends in temperature and precipitation, where
extreme temperatures and more intense precipitation
events occur more frequently in a 2C and 3C warmer
world compared to PD climate. The largest changes in
return periods of daily averaged temperature extremes
are observed in the southern regions and southern part
of the Tien Shan region. Extreme precipitation is
mostly changing in monsoon-dominated areas and
higher elevated regions such as the Pamir and
Karakoram. Interesting is that return periods of the
most extreme events (1 in 100 years) change more

rapidly than less extreme return periods. Strengthen-
ing of the monsoon is causing the increase in precipita-
tion extremes in the monsoon areas (see Section 3.4), while
in higher elevated areas the increased moisture capacity
effect in combination with the orography plays a role.
Additionally a more erratic precipitation distribution can
cause the increase in precipitation extremes (Krishna
Kumar et al., 2011; Sharmila et al., 2015).

Return periods of daily averaged temperature show
large spatial differences in south-eastern HMA, where
PD 1:100 year events will change to multi-year events in
a 3�C warmer world (Figure 4). This increase in daily
averaged temperature events is severe. We would like to
stress that the return periods are calculated with the aver-
aged daily temperature and return periods of daily maxi-
mum temperature would not follow the same trend by
definition. In the Hindu Kush PD 1:100 year temperature
events (25�C) will occur in a 3C warmer world 1:2 years,
whereas in the Karakoram (14�C) 1:1 years and in East
Himalaya (15�C) 1:0.02 years.

Return periods of daily precipitation sums show a simi-
lar spatial pattern as daily averaged temperature events but
its absolute change in return periods is significantly less.
This difference in response is caused by the variability of
daily averaged temperature and daily precipitation sums.
The empirical distribution estimate (Figure S2) of daily
averaged temperature is relatively flat between return
periods of 1 and 100 years, resulting in large changes in
return periods in a 2C and 3C warmer world. For example
an event with a return period of 100 years in PD climate
(±16�C) will occur yearly in a 3�C warmer world for that
specific location. The extreme temperature events in a 3C
warmer world are almost all higher than the most extreme
values of PD temperatures, resulting in strong decreases in
return periods with warmer climate. In the Hindu Kush
PD 1:100 year precipitation events (10 mm�day−1) will
occur in a 3C warmer world 1:35 years, whereas in the
Karakoram (3 mm�day−1) 1:19 years and in East Himalaya
(0.11 mm�day−1) 1:8 years.

Overall, changes in return periods of precipitation
extremes are largely homogeneous in a 2C warmer world,
while regional differences are large in a 3C warmer
world. This indicates that changes in return periods of
temperature and precipitation are not linearly correlated
with global temperature rise. For example, the change in
return periods of temperature extremes in the south-
western regions are only marginally affected in a 2C
warmer world, while in a 3C warmer world those are
heavily affected. As a consequence, this inhomogeneity
will also lead to different regional changes in the number
of natural hazards of for example landslides and flash
floods. Detailed information of return periods is needed
for an adequate prediction of extreme river discharge and
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likely has large consequences for the occurrence of floods
and the production of hydropower.

3.4 | Mountain relevant climate
indicators

Climate indicators reveal specific effects of global warming
and can be used to study the regional sensitivity (of the
cryosphere) to climate change. In Figure5 changes in several

mountain climate indicators, which are proxies for natural
hazards and cryospheric change are shown for HMA.

The PDD sum (Figure 5a) is a proxy for glacier melt
and shows largest changes at the margins of HMA. It is
interesting that relatively low-lying areas such as the
southern part of HMA and Tien Shan show the strongest
increasing trend. The snow-albedo effect can be of great
importance in those areas, as strongest temperature
changes are often found near the 0�C isotherm (Pepin
and Lundquist, 2008).

FIGURE 4 Daily averaged temperature and daily precipitation sums for different return periods (1, 10 and 100 years) for present day

climate (left panels) and its new return periods (RP) in a 2C (middle panels) and 3C warmer world (right panels). Please note the different

colorbars for the new return periods
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Snowfall drives glacier accumulation (Figure 5b) and
will decrease throughout HMA in a warmer world. Two
effects are at play: a decrease in solid precipitation due to
increasing temperatures and an increase in precipitation
by the increased moisture holding capacity of the air at
higher temperatures. The decrease in solid precipitation
(Figure 5b) indicates that on a yearly basis the temperature
effect is larger than the associated increase in total precipi-
tation. The amount of solid precipitation (Figure 5b) is
largest in the western regions, while largest changes can
be found along the southern margin of the Himalayas. In
the Karakoram, West Kunlun and Pamir regions minor
changes are projected, which is in agreement with previ-
ous findings on the Karakoram anomaly (e.g., Farinotti
et al., 2020). We note that the spatial resolution of EC-
Earth is insufficient to capture valley-scale processes, such
as small-scale orographically forced precipitation, which is
important for the distribution of temperature, precipitation
and wind over short horizontal distances in mountainous
terrain (Bonekamp et al., 2018).

Pre-monsoon precipitation (Figure 5c) is expected to
increase most in Central and East Himalaya, indicating
an earlier onset of the monsoon. Changes are moderate
in a 2C warmer world, while in a 3C warmer world a
clear distinction is visible between the south-eastern
regions (East Himalaya and Hengduan Shan and South-
ern Tibet) and the other regions. This is in correspon-
dence with observed increases in pre-monsoon
precipitation during last decades (Brunello et al., 2019).

Monsoon precipitation (Figure 5d) is gradually intensi-
fying in a 2C warmer world, while in a 3C warmer world
a more heterogeneous pattern is visible, with distinct max-
ima in the Hindu Kush and East Tien Shan. The post-
monsoon precipitation changes (Figure 5e) are largest in
the north-western regions in a 2C warmer world, while in
a 3C warmer world also in changes in East Himalaya,
Hengduan Shan and South Tibet are substantial. Precipita-
tion will increase in (pre- and post-) monsoon.

The change in the 95th percentile of temperature
(Figure 5f) will be largely homogeneous in a 2C warmer
world, but spatially variable in a 3C warmer world. The
pattern of the PD temperature extremes is similar com-
pared to the pattern of PDD, however the changes are
not. Extreme temperatures change most in moderate
temperature regimes (e.g., southern flanks of the
Himalayas and Tien Shan) and change least in areas with
high temperature extremes (e.g., Hissar Alay, Tien Shan).
Interesting is the projected decline in temperature
extremes in East and West Kunlun Shan, where also gla-
ciers with stable or positive mass balance are found
(Brun et al., 2017).

Extreme precipitation (Figure 5g) increases absolutely
the most in monsoon regions, and agrees with the

intensification of the monsoon circulation (Figure 5d).
The monsoon intensification and monsoon region expan-
sion also result in an increase in events where extreme
temperature and extreme precipitation coincide
(Figure 5h). Regions outside the monsoon-dominated
areas generally receive their precipitation extremes in
winter and their temperature extremes in summer. As a
result, compound events are less common outside
monsoon-dominated regions and therefore also less likely
to change.

Our results are in accordance with Jury et al. (2019),
who downscaled a climate model ensemble in order to
assess the model uncertainty in 2-m temperature, PDD,
accumulated precipitation and precipitation rate. They
also found a decrease in solid precipitation, increase in
monsoon precipitation and a PDD increase in lower ele-
vated areas.

East Himalaya shows the strongest changes in all
climate indicators, except the post-monsoon precipita-
tion (Figure 6). Other regions with large changes are
Tibet, Central Himalaya, East Himalaya, Hindu Kush
and Hengduan Shan. The Karakoram, Qilian Shan and
East and West Kun Lun are regions with the least
change. We also observe that climate indicators
changes are non-linear. For example in East Himalaya,
the post-monsoon precipitation increases only margin-
ally, while the extreme precipitation increase is large.
Also the boreal summer precipitation in the Pamir did
decrease in a 3C warmer world compared to a 2C
warmer world. This non-linear effect can indicate tip-
ping point behaviour in the climate system, located
between 2C and 3C.

In Hengduan Shan and East Himalaya the pre-mon-
soon, monsoon and post-monsoon monsoon precipitation
indicators change similarly, while in Central and West
Himalaya the pre-monsoon precipitation changes more
than the post-monsoon precipitation. In the 2C warmer
world, changes in precipitation indicators are similar
between the regions, while in a 3C warmer world
changes become more distinct between the regions.
Largest changes can be found in the monsoon-dominated
areas and indicate that shifts in large-scale monsoon cir-
culation are a key driver in this part of HMA.

3.5 | DT sensitivity per region for the
relevant indicators

Not all regions show a similar sensitivity to the
regional temperature increase. For all climate indica-
tors the spatial heterogeneity in temperature change is
lower in the 2C warmer world than in a 3C warmer
world (Figure 7). In general, our results show that the
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climate indicators are positively correlated with the
regional temperature increase. Only solid precipitation
has a negative correlation with temperature. Lutz

et al. (2018) found a linear relationship for similar cli-
mate indicators for downstream areas (Indus, Ganges,
Brahmaputra).

FIGURE 5 The different climate indicators

for present day climate (left panels) and the

anomaly of the 2C (middle panels) and 3C (right

panels) warmer world compared to present day

climate. Positive degree days and solid

precipitation are only shown for glacier and/or

snow covered areas for at least one month a

year. Panel (a) positive degree days, (b) snowfall,

(c–e) precipitation in pre-monsoon, monsoon

and postmonsoon, (f, g) 95th percentile of

temperature and precipitation, (h) compound

events (95th percentile of temperature and

precipitation)
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Monsoon precipitation changes the most of the precipi-
tation indicators. Note that the monsoon precipitation is a
precipitation sum over 4 months, while the pre-monsoon
and post-monsoon precipitation is accumulated over
2 months. The monsoon precipitation (+26 mm�K−1 or

5.4%�K−1) and pre-monsoon (+6 mm�K−1 or 2.0%�K−1)
precipitation show a clear relation with different warming
rates, while the post-monsoon precipitation shows a less
clear and weaker signal (1 mm�K−1 or −0.5%�K−1). The
significance of these relations is hard to quantify as

FIGURE 6 Regional summary of change in climate indicators compared to present day, normalized by the 3� warmer world. Each

climate indicator is normalized by the maximum regional value: a value of 1 for a specific region and climate indicator means this climate

indicator changed the most in that region compared to the other regions, EP, extreme precipitation (P95); ET, extreme temperature (T95);

MD, melt days; PA, yearly solid precipitation sum; PpreM, precipitation during pre-monsoon; PM, monsoon precipitation; PposM,

precipitation during post-monsoon; PDD, positive degree days; PT, compound event when both precipitation and temperature exceed the

present day 95% percentile. The climate indicator change between 2C and present day is indicated in blue, the change between 3C and

present day in red. Data are aggregated using all cells in a region, except for PDD and PA, where only glacier and/or snow-covered (at least

1 month a year) cells are considered
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the temperature differences are small in a 2C world and
the number of regions are low.

When we assume a linear relation between change in
regional temperature and the climate indicators in
Figure 7, precipitation extremes are projected to increase
with 0.5 mm�K−1, temperature extremes with 0.87 K�K−1

and resulting compound events with 3.9 days�K−1, with
strongest changes in the south-eastern part of HMA. Com-
pound events are important for flooding, as those are
indicative of periods where extreme rainfall coincides with
periods of extreme melt. Accumulated solid precipitation
is expected to decrease (−1.9 cm�K−1), with strongest
decreases in the Himalaya and Hindu Kush. The PDDs

are expected to increase with 256 days�K−1 per degree
warming.

4 | CONCLUSION

In this study we have quantified projected changes in
extreme weather events and climate indicators in HMA
due to global climate changes. To this end, we used three
large model ensembles of the EC-Earth model with 2000
simulation years in each ensemble (PD climate and in a
2C and 3C warmer world). The most important benefit of
large ensemble modelling is that extreme events are

FIGURE 7 Regional climate indicators as a function of the change in average temperature for snow and glacier cells only. The squares

denote the 2C warmer world and the dots a 3C warmer world. The difference in temperature between the 2C and 3C warmer world

compared to present day is indicated on the x-axis (DT) and the difference in climate indicators on the y-axis: DPAMpre, precipitation

during pre-monsoon; DPAM, monsoon precipitation; DPAMpost, post-monsoon precipitation; DP95, 95th percentile of precipitation; DT95,

95th percentile of temperature; DCE, compound events (when both precipitation and temperature exceed the present day 95% percentile);

DPA, solid precipitation; DPDD, positive degree days
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explicitly modelled, so no assumptions on tail behaviour
of the distributions are required, and that results there-
fore have greater precision when analysing extreme
events in HMA.

Using global climate model data to assess changes in
mountainous climate is challenging, as the resolution is
too coarse to resolve the complex topography and as a
result resolving valley scale dynamics is generally not possi-
ble (Cannon et al., 2017; Bonekamp et al., 2018). However,
GCMs allow us to generate large ensembles as used in this
study due to their relatively low computational costs.
Despite its coarse resolution, such an analysis provides key
insights in how future extremes and mountain specific
weather indicators may change at the large scale that
would otherwise not be available.

Our results show that temperature and precipitation
will not change uniformly. There are strong seasonal and
regional differences between a 2C and 3C warmer world.
Temperature will increase the most in Eastern HMA
(Hindu Kush, Himalayas, Hengduan Shan, Tibet), while
precipitation changes follow a more erratic trend. Win-
ters in the Himalayas will be dryer, while wetter in other
regions. Summers in the Tien Shan, Hissar Allay and
Pamir regions will be dryer, while wetter in the rest of
HMA. Elevation dependent warming in EC-Earth is only
observed in the southern regions of HMA, and not in
other regions. This would indicate elevation dependent
warming is region specific and not solely an elevation-
dependent effect.

The return periods of extreme temperature and pre-
cipitation events decrease in a warmer climate, and low-
frequent events change more than less frequent events.
The 1:100 years temperature events in PD climate will
occur approximately yearly in a 2C warmer world (with a
hot spot in Eastern Himalaya), and multi-yearly in a 3C
warmer world in southern and central regions. Return
periods of precipitation events show a similar spatial pat-
tern as for temperature events but its absolute return
period is considerably less. Precipitation changes are also
notable in higher elevated regions such as the Pamir and
Karakoram likely due to the increased moisture holding
capacity of the atmosphere in combination with the high
altitude climate.

We show that the global temperature rise has a large
influence on the mountain-specific climate indicators in
HMA. The increase in PDDs and decrease in solid precip-
itation will lead to more negative glacier mass balances,
with largest effects in the Himalaya and Hengduan Shan
regions. A 2C warmer world shows a rather homoge-
neous response, while distinct differences between
regions are present in a 3C warmer world. This observa-
tion can indicate a non-linear acceleration in the regional
climate system.

Differences between wet and dry seasons are
amplified in monsoon-dominated regions by a dryer
winter and wetter monsoon period in the future com-
pared to present-day climate. Precipitation amounts
will decrease in pre-monsoon in Hissay Alley, West
Tien Shan, Hindu Kush and West and Central
Himalaya, which will have large impact on the water
availability during the growing season in downstream
regions. Extreme temperature and precipitation are
projected to increase the most in the Himalayas,
southern part of Tien Shan and western regions. Com-
pound events however are projected to increase most
in monsoon-dominated areas, since temperature and
precipitation extremes coincide. Overall, largest
changes in climate indicators can be found in regions
that are densely populated such as the Hindu Kush
and Himalaya. East Himalaya is out far the most
affected region, where seven out of eight climate indi-
cators change the most, indicating climate change
impacts this region the most.

The increase in weather extremes will affect the
number and intensity of natural hazards and will
increase the exposure to these hazards for all mountain
communities' inhabitants directly. Our results are of
great importance for climate change adaptation strate-
gies in HMA and future research into the changes in
meteorological and hydrological extremes in HMA is of
key importance. Future research should focus on mak-
ing the explicit link between climate model derived
changes in extremes and impact models of natural haz-
ards. This approach has been initiated for landslides in
HMA (Kirschbaum et al., 2020), but a full probabilistic
approach using large ensemble modelling would be a
logical and much needed next step.
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