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Contribution of climatic changes in mean and
variability to monthly temperature and
precipitation extremes
Karin van der Wiel 1✉ & Richard Bintanja1,2

The frequency of climate extremes will change in response to shifts in both mean climate and

climate variability. These individual contributions, and thus the fundamental mechanisms

behind changes in climate extremes, remain largely unknown. Here we apply the probability

ratio concept in large-ensemble climate simulations to attribute changes in extreme events to

either changes in mean climate or climate variability. We show that increased occurrence of

monthly high-temperature events is governed by a warming mean climate. In contrast, future

changes in monthly heavy-precipitation events depend to a considerable degree on trends in

climate variability. Spatial variations are substantial however, highlighting the relevance of

regional processes. The contributions of mean and variability to the probability ratio are

largely independent of event threshold, magnitude of warming and climate model. Hence

projections of temperature extremes are more robust than those of precipitation extremes,

since the mean climate is better understood than climate variability.
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Variability in weather and climate inherently leads to the
occurrence of extreme weather or climate events. These
events, more unusual and more severe than normal or

average weather, include for example heatwaves (high-tempera-
ture events), cold waves (low-temperature events), downpours
(heavy-precipitation events) and droughts (low-precipitation
events). Societies and natural ecosystems are increasingly at risk
of such extreme weather events1–4. For instance, heatwaves
increase morbidity and mortality, reduce labour efficiency and
crop yields, and intensify droughts and forest fires5,6, while
downpours lead to floods that result in human casualties, damage
to infrastructure, crop failure, landslides, and insurance costs7–9.
Consequently there is a huge societal and scientific interest to
quantify and understand future trends in the frequency and
intensity of extreme events and their attribution to anthropogenic
climate change2–4. Recent climate studies have contributed to
quantifying such trends, but the climatic mechanisms behind
changes in climate extremes often remain elusive. This is mainly
because extreme event occurrence responds to both changes in
mean climate and to changes in climate variability10–14. These
two fundamental aspects of the climate system exhibit consider-
able changes in response to (human-induced) climate warm-
ing11,14, but often not in the same manner.

Importantly, changes in mean and variability can generally be
attributed to different climate mechanisms14–17, and, as a result,
may have opposing effects on extreme event frequency.
The combined effect on changes in regional extreme event
occurrence thus depends on the balance between, and effectivity
of, the associated driving mechanisms. For example, the Arctic
region will experience increasing mean temperatures due to
temperature and surface albedo feedbacks18–20, but sea ice retreat
will ultimately lead to a reduction in temperature variability21,22.
The individual contributions to the occurrence of high-
temperature events are thus of opposite sign, the total effect of
climate change on high-temperature event frequency therefore
depends on the balance between the two mechanisms. Another
example concerns Arctic precipitation, for which mean changes
are driven mainly by sea ice retreat and surface evaporation23,
whereas changes in variability are governed by atmospheric
poleward moisture transport17. Even though both are projected to
increase as a result of climate change, and thus contribute to more
and more extreme heavy-precipitation events, the mechanisms
behind enhanced Arctic downpours crucially depend on the
relative importance of increases in mean precipitation and in
precipitation variability. This attribution of changes in climate
extremes to specific climate mechanisms is important because the

drivers of changes in the mean climate are fairly well known, in
contrast to those that govern changes in climate variability13.
Unfortunately, the separation of mean changes and changes in
variability with respect to their contribution to changing climate
extremes is currently unknown.

Here we quantify what part of a change in extreme event
probability is due to a shift in the mean climate, and what part
due to a change in climate variability. We use the Probability
Ratio (PR) concept24,25 in conjunction with large-ensemble cli-
mate modelling26 to provide robust estimates of the drivers of
change in extreme events (see Methods). PR represents the
changing probability of an extreme event caused by anthro-
pogenic climate change. We extend the PR framework to split the
conventional (or total) PR (which thus includes changes in both
mean and variability), in a ‘PRmean’ representing changes in
event probability due to a change in mean climate and a ‘PRvar’
for changes due to changes in climate variability (Fig. 1). We then
apply several state-of-the-art large-ensemble global climate model
simulations to realistically quantify the individual contributions
of future changes in means and in variability to an altered
extreme event occurrence. Evidently, PRtotal values and its par-
titioning into the contributions from changes in the mean and
variability differ among climate variables and are also strongly
dependent on the region of interest. As such, the novel split of PR
into its mean and variability components will yield valuable
insight into the regionally-dependent climate mechanisms that
govern changes in extreme climate events.

Results
Attribution of global projections of changes in extreme event
occurrence. Future changes in the probability of extreme monthly
high-temperature and heavy-precipitation events exceeding the 98th
percentile in the present-day climate will be substantial (Fig. 2). Using
large-ensemble time slice simulations27 with the global climate model
EC-Earth28 (see Methods), we find that extreme high-temperature
events in a 2 °C warmer climate will increase virtually everywhere
(Fig. 2a)1,24. The largest PR-values are located over the tropical
oceans, with values exceeding 20 in many locations (indicating that
the chance of exceeding a high-temperature threshold will be 20
times more likely in the future than today). This can be attributed to
the relatively narrow distribution of near-surface temperatures over
ocean surfaces, meaning that a small shift of the mean will move a
substantial part of the distribution over the extreme event threshold.
In contrast, the average PRtotal over global land areas is more modest
(5.5). By far the largest contributor to the increase in extreme heat
probability is the mean warming (PRmean averaged over global land

Fig. 1 Schematic diagram of the breakdown of the Probability Ratio (PR) in the individual contributions of changes in the mean state and changes in
climate variability to the total change in extreme event probability (see Methods for details). a Two simulated distributions of some climate variable
(`NAT' and `CC'), the PRtotal value is computed from the number of events exceeding the threshold in both distributions (Eq. (1)). b The effect of change
in mean climate is removed by shifting the `CC' distribution such that it has the same mean value as the `NAT' distribution, PRvar can then be evaluated
based on threshold exceedance in `CC_v'. c PRmean follows from the PR-relationship (Eq. (2)), the individual contributions to PRtotal are found. d The ratio
of contribution is determined from the different PR-values (Eq. (3)), and sum up to a total of 1.
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areas: 5.4), whereas changes in temperature variability only increases
the event probability in a few tropical and midlatitude regions
(PRvar averaged over global land areas: 1.1). This finding is in
agreement scientific literature on processes governing changes in heat
waves29–32. Interestingly, subdued temperature variability in the polar
regions related to sea ice retreat11,21,22,33 actually reduces the total
increase in extreme heat occurrence.

Over 85% of the Earth’s surface will see an increase of extreme
heavy-precipitation events1,24, with an average PRtotal of 1.3 over
continental regions (Fig. 2b). In contrast to high-temperature events,

changes in precipitation variability14,21 contribute considerably to
the increases in event frequency (average over global land areas:
PRmean= 1.1, PRvar= 1.2). This suggests that, generally, one needs
to incorporate both components and their underlying causes to fully
understand and quantify the projected changes in heavy-precipitation
events. This is a direct consequence of precipitation variability
generally increasing more rapidly than mean precipitation for a
variety of reasons, such as changing atmospheric moisture content,
transport and dynamics, and changes in the intensity and spatial
extent of atmospheric convection14,15,17,34.

Fig. 2 Maps of the Probability Ratio (PR) for monthly extreme events exceeding the 98th percentile in a 2C-warming scenario (as specified in the
Paris agreement) relative to the present-day climate. For a high-temperature events and b heavy-precipitation events; shown are from left-to-right the
total PR, PR due to the change in mean climate and PR due to the change in climate variability.

Fig. 3 As Fig. 2, but here for a 3C-warming scenario. Maps of the Probability Ratio (PR) for monthly extreme events exceeding the 98th percentile in a
3C-warming scenario relative to the present-day climate. For a high-temperature events and b heavy-precipitation events; shown are from left-to-right
the total PR, PR due to the change in mean climate and PR due to the change in climate variability.
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In a world with 3 °C global temperature rise the various values
of PR are higher than in a 2 °C warmer world (Fig. 3), indicating
that changes in extreme events are larger for greater magnitudes of
global warming35–37. In contrast, the spatial patterns of PRtotal,
PRmean and PRvar are qualitatively similar between the 2 °C and
3° warming experiments (spatial correlations between 0.92 and
0.95), this indicates that the contributions of the associated climate
mechanisms to the change in extreme events are largely
independent of the magnitude of the climate forcing or response.

Regional climate processes governing changing extreme events.
The strong spatial variations in PR-values and mean and varia-
bility contributions suggest that the climate mechanisms gov-
erning changes in climate extremes differ considerably from one
region to the next. To quantify the individual contributions of
mean and variability changes at the regional level, we evaluate

PR-values for each of the SREX regions (region boundaries and
name abbreviations taken from IPCC SREX1,38). Regions close to
the Arctic, most notably ALA, CGI, and NAS, are projected to
experience a substantial increase in extreme heat probability,
despite a considerable sea-ice related decrease in temperature
variability21,22 that limits PRtotal (Fig. 4a). In contrast, changes in
extreme heavy-precipitation events in these near-Arctic regions
are much less affected by increasing precipitation variability17

(Fig. 4b), showing the importance of understanding the effectivity
of these changes to extreme event occurrence. In relatively warm
regions, such as CAM, NEB and SAU, the increase in likelihood
of high-temperature events is dominated by the changes in mean
temperatures (presumably because the overall greenhouse
warming dominates local processes39 that amplify heat waves),
whereas the increase of heavy-precipitation events is governed by
the effects of increasing precipitation variability. This could imply

Fig. 4 The Probability Ratio (PR) for SREX regions (land only) and the global mean (land and ocean) for monthly extreme events exceeding the 98th
percentile in a 2C-warming scenario (as specified in the Paris agreement) relative to the present-day climate. For a high-temperature events, b heavy-
precipitation events. Red bars show the total PR, blue bars the PR due to the changes in mean climate and yellow bars the PR related to changes in climate
variability. Values of the vertical axis are shown in the global subplot.
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that precipitation variability is primarily linked to mean warming
via atmospheric convective processes15,34 through which pre-
cipitation extremes increase at a far greater rate than mean
precipitation.

The relative contributions of changes in the mean and changes
in variability can be quantified using the ratio of the respective
contributions (Fig. 1d, Eq. (3)), and vary between regions and
climate variables, dependent on regional mechanisms that govern
changes in the mean and in variability. For example, in the near-
Arctic regions, the contribution of changes in the mean state to
the increase of extreme high-temperature events is approximately
1.25, indicating that reductions in temperature variability oppose
the overall increase in PRtotal by 0.25 (Fig. 5a). The two
contributions are closer to being equal for increasing heavy-
precipitation events along the North American west coast (WNA)
(mean: 0.25, variability: 0.75, Fig. 5b), where projected changes in
the dynamics of atmospheric rivers impact both mean

precipitation and precipitation variability40. Generally, these
ratios are invariant for different levels of warming and also for
extreme event threshold (Figs. 5 and 6), providing further
evidence that the regionally-dependent climate mechanisms that
govern trends in mean and variability, both causing changes in
extreme events, are mostly independent of the magnitude of
climate change, and of the extremeness of the event.

Intermodel comparison of contributing climate mechanisms.
Climate models exhibit considerable intermodel differences,
especially in terms of (regional) variability and extremes (and
changes therein), since these are largely dependent on para-
meterised small-scale processes (e.g., soil moisture processes,
surface heat fluxes, clouds, atmospheric convection1,41). To infer
whether our findings are model-dependent we employ the large-
ensemble simulations collated by the US CLIVAR working group
on Large Ensembles26 (see Methods) to investigate the

Fig. 5 The ratio of contribution of PRmean (blue bars) and PRvar (yellow bars) to PRtotal in a 2C- and 3C-warming scenario (left and right
bar respectively) for events exceeding the 98th percentile for SREX regions and the global mean. For a monthly high-temperature events, b monthly
heavy-precipitation events. Values of the vertical axis are shown in the global subplot.
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mechanisms behind changes in extreme event likelihood over
time in a multi-model framework. Using transient scenario
simulations covering the period 1950-2100 based on six global
climate models we find that climate models agree on the sign of
the change of the two contributors in the majority of the SREX
regions. This model agreement is larger for high-temperature
events than for heavy-precipitation events and is higher for the
contribution of changes in the mean than for changes in varia-
bility (Fig. 7). There is some intermodel uncertainty in the
magnitude of the changes, i.e. the exact PR-values.

Despite such intermodel differences, the ratio of the contribu-
tions of mean and variability to the change in extreme events is
remarkably similar between models in most regions (Fig. 8).
Evidently, changes in high-temperature events are, in all regions
and in all models, governed by changes in the mean state (average
contribution to PRtotal of 0.94). In contrast, projections of
changes in heavy-precipitation events are less robust, mainly due
to large spatial variability in extreme precipitation mechanisms,

and also because the sign of total change, PRtotal above or below
1, exhibits considerable intermodel differences. We will demon-
strate model-dependencies by highlighting projections of tem-
perature and precipitation extremes in two contrasting regions:
the Mediterranean (MED) and Alaska (ALA) (Fig. 9). Projections
of change in high-temperature extremes are well-defined in both
ALA and MED (Fig. 9a, c), all models agree on the direction of
change and the contributions of mean and variability, despite
obvious regional differences. Note that the ratio of contribution is
constant in time (not shown in a graph), indicating that the
regional attribution of change to mean and/or variability does not
depend on the magnitude of climate warming.

End of century PRtotal estimates for heavy-precipitation events
in the MED range from 0.2 to 1.1 between models (Fig. 9d). This
intermodel uncertainty for precipitation extremes, even in the
direction of the change, can be attributed to the uncertain balance
between two robust climate processes: a negative contribution of
mean drying climate42 (PRmean between 0 and 0.4) and a

Fig. 6 The ratio of contribution of PRmean (blue bars) and PRvar (yellow bars) to PRtotal for events of exceeding different thresholds (bars, from left
to right: 90th, 94th and 98th percentiles) in a 2C-warming scenario for SREX regions and the global mean. For a monthly high-temperature events,
b monthly heavy-precipitation events. Values of the vertical axis are shown in the global subplot.
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positive contribution due to increasing precipitation variability43

(PRvar between 1.0 and 2.5). Both trends are linked to changes in
Mediterranean cyclones; models project a decrease in the number
of Mediterranean cyclones (the dominant source of precipitation)
owing to changes in circulation and storminess, but rainfall
intensity in individual cyclones is projected to increase due to
higher atmospheric moisture content44. In this region 80 % of
inter-model variance in the mean trend is due to uncertainty in
the circulation response45, highlighting the need for improved
understanding of physical processes and their (relative) impor-
tance in contributing to regional climatic changes. In Alaska the
two processes work in the same direction and as a result PRtotal
is better constrained (Fig. 9b).

Conclusions
In this study we attribute changes in extreme event occurrence to
either climatic changes in mean climate or climatic changes in
climate variability. By means of an extension of the PR framework,
we are able to quantify the separate contributions. It is shown that
future changes in monthly high-temperature extremes are mostly
driven by increasing mean temperatures (on average 94 % of the
total), whereas changes in monthly high-precipitation events
depend also considerably on changes in precipitation variability.
Overall, climate models agree to a large degree on these drivers of
change. The trend in extreme events varies between climate vari-
ables and regions, which is due to differences in climate mechan-
isms causing changes in the mean and in variability.

Fig. 7 As Fig. 4, but here based on the US CLIVAR multi-model large ensemble. Shown are PR values for the end-of-century (EOC, 2070-2099)
relative to 1950-1979 under the RCP8.5 emission scenario. Coloured bars show the multi-model-mean (models included: CanESM2, CESM1, CSIRO-
Mk3.6, EC-Earth, GFDL-CM3, GFDL-ESM2M), vertical black lines indicate the inter-model range of the PR-values, lines are plotted thicker if there is
intermodel disagreement in the sign of change. For a high-temperature events, b heavy-precipitation events. Red bars show the total PR, blue bars the PR
due to the changes in mean climate and yellow bars the PR related to changes in climate variability. Values of the vertical axis are shown in the global
subplot. The two highlighted regions are investigated in more depth in Fig. 9.
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The breakdown into contributions of changing mean climate and
changing climate variability is robust to varying definitions of the
extremeness of the event (the event threshold), to the magnitude of
future climate change (the level of warming) and to the choice
of climate model. This insight is vital for assessing the robustness of
projected changes in extreme event frequency. Our understanding of
the associated mechanisms associated with changes in the mean
climate is generally much better than those for changes in climate
variability13. This suggests that considerable progress can be made by
improving understanding of (trends in) climate variability, which in
many regions depend on small scale climate processes (e.g. atmo-
spheric convection, surface heat fluxes) that are normally para-
meterised in climate models1,41. The breakdown of trends in extreme
events into the two basic contributors (mean, variability) provides
valuable insights regarding the relative importance of climate pro-
cesses governing these trends. This will help direct future research, as

in many regions trends in climate variability remain unquantified
and poorly understood.

Methods
PR framework. Conventionally, the Probability Ratio (PR)24,25 is computed using
data from two climate model simulations, one for a natural climate (‘NAT’) and
one for a climate under human influence (‘CC’, Fig. 1a). PR is then defined as the
ratio of event probabilities:

PR ¼ PCC
PNAT

; ð1Þ

with PR = 1 indicating no attributable change in extreme event probability, PR > 1
indicating an increase in event probability, and PR < 1 a decrease in event probability.

Here we extend the PR framework concerning changes in extreme event
probability by separating this PR-value (‘PRtotal’) into a contribution from changes
in the mean climate (‘PRmean’) and a contribution from changes in climate
variability (‘PRvar’). We define the mean climate as the annual mean value of the
meteorological variable of interest, and climate variability as the variation of this

Fig. 8 The ratio of contribution of PRmean to PRtotal for extreme events based on the US CLIVAR multi-model large ensemble at the end-of-century
(EOC, 2070-2099) relative to 1950-1979 under the RCP8.5 emission scenario. For a monthly high-temperature events, b monthly heavy-precipitation
events. Models included: CanESM2, CESM1, CSIRO-Mk3.6, ECEarth, GFDL-CM3, GFDL-ESM2M (M1-M6 respectively). The two highlighted regions are
investigated in more depth in Fig. 9. Values of the vertical axis are shown in the global subplot.
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variable around the climatic mean. Based on two climate datasets (e.g. ‘NAT’ and
‘CC’), we compute the change in climatic mean. We then subtract the change in the
mean from the CC dataset to create a new dataset ‘CC_v’ (Fig. 1b). The remaining
difference between CC_v and NAT can then be attributed to trends in climate
variability, from which PRvar is calculated. Following these steps, PRmean can be
computed from the following relationship:

PRtotal ¼ PRmeanþ PRvar� 1: ð2Þ
In this equation, subtracting by 1 is necessary, since the reference PR-value is 1,

indicating no change in probability. PR-values should be interpreted on a
logarithmic scale, with PR = 2 and PR = 0.5 representing a similar magnitude of
change but in opposite directions (Fig. 1c).

To quantify the relative contribution of changes in the mean climate (PRmean)
and changes in climate variability (PRvar) to the total change in extreme event
probability (PRtotal), we evaluate the ratio of the contributions as follows:

Rmean ¼ ðPRmean� 1Þ=ðPRtotal� 1Þ; ð3Þ
and equivalently for Rvar (Fig. 1d). The two relative contributions (Rmean and
Rvar) sum up to a total of 1.

Data and analysis. To evaluate total PR and its components we use data from
various large ensemble climate model simulations. We use a set of three time slice
simulations using the state-of-the-art global climate model EC-Earth28, for which
each time slice consists of 2000 years representative of a certain average absolute
global mean surface temperature value (‘PD’ for present-day, ‘2C’ for a 2 ∘C
warming and ‘3C’ for a 3 ∘C warming, the latter two relative to pre-industrial
climate)27. Furthermore, we use six transient large ensemble model simulations
collected by the US CLIVAR Working Group on Large Ensembles26 (available at:
http://www.cesm.ucar.edu/projects/community-projects/MMLEA/). These simula-
tions cover the period 1950-2100 and are carried out using six different climate
models28,46–50, the number of ensemble members ranges from 16 to 50: CanESM2
(50 members), CESM1-CAM5 (35; we limit the analysis to members 1-35 out of 40
available members, because members 36–40 are slightly warmer than the rest
which could affect extreme event frequency, see also http://www.cesm.ucar.edu/
projects/community-projects/LENS/known-issues.html.), CSIRO-Mk3-6-0 (30),
EC-Earth (16), GFDL-CM3 (20), GFDL-ESM2M (30). All six models were also part
of the Coupled Model Intercomparison Project, phase 5 (CMIP5). The simulations
used the historical forcing for the period 1950–2005, and the strong forcing

scenario for the period 2006-2100, for which the total radiative forcings in the year
2100 equals 8.5 W m−251. We use monthly mean values of near-surface tem-
perature (tas) and precipitation (pr) in all analyses.

For the time slice model simulations with EC-Earth, the mean state is computed
using all 2000 model years assuming that there is no forced trend within a time
slice. Extreme event thresholds were defined based on the PD ensemble, and PR-
values were consequently computed based on threshold exceedances in the 2C and
3C time slice simulations. For the transient model experiments (US CLIVAR) we
employ a 4th order polynomial to estimate the trend in the mean state, following
the approach in related studies13,52. These time series were analysed by taking
subsequent 30-year periods, with the period 1950–1979 being the reference period
for defining extreme event thresholds. Confidence intervals were estimated by
means of bootstrap resampling (N= 10, 000). For our regional analysis we use the
26 IPCC SREX regions1,38, we only consider land cells within these regions. The
global mean analysis takes into account both land and ocean cells.

Data availability
The model output for the EC-Earth time slice experiments is available on reasonable
request from the corresponding author. The model output for the US CLIVAR large
ensemble experiments were obtained from: http://www.cesm.ucar.edu/projects/
community-projects/MMLEA/.

Code availability
Code for data analysis is available on request from the corresponding author.
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