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Abstract
The investigation of risk due toweather and climate events is an example of policy relevant science.
Risk is the result of complex interactions between the physical environment (geophysical events or
conditions, including but not limited toweather and climate events) and societal factors (vulnerability
and exposure). The societal impact of two similarmeteorological events at different times or different
locationsmay therefore varywidely. Despite the complex relation betweenmeteorological conditions
and impacts,mostmeteorological research is focused on the occurrence or severity of extreme
meteorological events, and climate impact research often undersamples climatological natural
variability. Here we argue that an approach of ensemble climate-impactmodelling is required to
adequately investigate the relationship betweenmeteorology and extreme impact events.We
demonstrate that extremeweather conditions do not always lead to extreme impacts; in contrast,
extreme impactsmay result from (coinciding)moderateweather conditions. Explicitmodelling of
climate impacts, using the complete distribution of weather realisations, is thus necessary to ensure
that themost extreme impact events are identified. The approach allows for the investigation of high-
impactmeteorological conditions and provides higher accuracy for consequent estimates of risk.

1. Introduction

Human and natural systems around the world experi-
ence daily weather and ongoing climate change, and are
therefore susceptible to the impacts of adverse meteor-
ological conditions. Whether a meteorological event
leads to an extreme impact depends on many factors,
including exposure (people, assets or ecosystems in
places that couldbe affected) and vulnerability (inability
to cope with external pressure, Agard et al 2014). For
example, damage due to tropical cyclones depends on
both the storm characteristics and on the local situation
at landfall (Pielke et al 2008); the danger of extreme heat
is related to local demographics and social context (Reid
et al 2009, Mora et al 2017). For these reasons, to
support science-informed policy, it is obvious that
meteorological and climate change research needs to
explicitly include the associated societal or natural
impacts (e.g. Smith 2011, Baklanov et al2018).

However, a large proportion of meteorological
research is focused on the occurrence and/or severity of
extreme meteorological events. Examples include stu-
dies of heavy rain events, meteorological droughts,
heatwaves and tropical cyclones, based on variables
readily available from climate models (e.g. Stott et al
2004, Van Oldenborgh et al 2017, Herring et al 2019).
Though such research advances our understanding of
the physical climate system and changes therein, it does
not provide information on the impact of specific
weather events (e.g. flooding, wildfires, coral bleaching,
biodiversity loss, crop losses, property damage, health
impacts, financial losses, loss of life). Its direct use for
policy makers is therefore fairly limited. Here we will
show that investigating meteorology and extremes
therein, and evaluating impacts based on these extreme
events can lead to a significant underestimation of risk.

Climate impact research is concerned with asses-
sing the impacts of weather and climate change on
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human and natural systems, addresses some of these
issues. However, often uncertainties in impact
mechanisms and feedbacks take a more prominent
role than uncertainty due to meteorological variability
(e.g. Davie et al 2013, Yang et al 2017, McSweeney and
Jones 2016). This limits the understanding of the vari-
ety of meteorological conditions that may lead to a
common impact, and the possible neglect of so called
‘Black Swan’ events (Nassim 2007).

The aim of this essay is two-fold: first, to highlight
the nontrivial meteorology-impact relation and the
significance of considering actual impacts when inves-
tigating the effects of severe weather and climate
change on communities and ecosystems, and second,
to promote an integrated climate and impact model-
ling approach that addresses this complicated rela-
tionship. We argue that the ensemble modelling
practice common in physical climate science (Deser
et al 2020) should be extended with an ensemble
impact modelling approach to investigate extreme
impact events (figure 1). We think that such impact-
driven science, which must be built on collaboration
between a wide range of academic specialisations as
well as stakeholders (Vera 2018), will help gain new
insights since societal or ecological vulnerabilities can
be more accurately linked to (changing) meteor-
ological conditions. By means of an illustrative case
study we show that ensemble climate-impact
modelling (i) allows the investigation of events of
highest impact, (ii) advances our understanding of
the meteorological drivers of extreme impacts and
(iii) helps to more accurately estimate (changes in)
societal risk from meteorological conditions. The
advocated method provides a framework for the ana-
lysis of compound events (combinations of events that
amplify each other’s impact, or moderate events that
lead to an extreme impact when combined; Senevir-
atne et al 2012, Zscheischler et al 2018), by reducing
thesemulti-variate events to an univariate impact vari-
able. With climate changing and meteorological
extremes becoming more common, obtaining accu-
rate estimates of impacts and improved insights into
the interactions between physical drivers and societal
impacts is vital.

2.Methods: event selection based on
extreme impact

Much meteorological research starts from the meteor-
ological extreme and considers the societal impacts
afterwards. From large ensembles of climate data, the
hottest, wettest, driest or windiest events are selected
(‘extreme weather events’), after which the societal
impact of such events is evaluated and often stressed as
motivation for further study into the changing nature
or predictability of these extreme weather events.
However, not all extreme weather events result in
extreme impacts (schematically outlined in figure 2(a)),
and trends in extreme weather events may be different
from trends in extreme impact events. For example,
climate change made the rainfall of Hurricane Harvey
15% more intense (Van Oldenborgh et al 2017), but
landuse changesmagnified the effects of climate change
during the consequent flooding disaster, resulting in an
84% higher peak of discharge (Sebastian et al 2019).
Besides meteorological drivers, other physical factors
(e.g. pre-existing land state, coincident weather events)
or societal factors (e.g. vulnerability, exposure, resi-
lience, preparedness) play a large role in determining
whichweather events lead to extreme impact andwhich
donot.

To aid future studies on the specific weather events
that result in the most extreme impacts, we advocate
an interdisciplinary approach for the selection of such
events: ‘ensemble climate-impact modelling’. We sug-
gest that the large ensembles of climate data com-
monly used in meteorological research (Deser et al
2020) are used in their entirety as input for impact
models, resulting in large ensembles of impact data.
From this dataset of societal/natural impacts the most
extreme events (‘extreme impact events’) can be selec-
ted (figure 1). These events can guide further research
into the physical origin of the extreme impact, into the
links between impact and meteorology (figure 2(b)),
and can be used for estimates of risk. Impacts that may
be investigated in this way include, for example,
human well-being using thermal comfort models,
agricultural production using crop growth models,
river flooding using hydrological models, and energy
security using renewable energymodels.

Figure 1. Schematic diagramof the ‘ensemble climate-impactmodelling’ approach. Full arrows indicate consecutive research steps,
the dotted arrow indicates a flowof data.
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The ensemble climate-impact modelling approach
has a number of advantages over a purely meteor-
ological approach. First and foremost, events of highest
societal interest due to large impact are selected.
Extreme impact eventsmay of course result from severe
weather conditions (e.g. De Bono et al 2004, Van der
Wiel et al 2017, Van Oldenborgh et al 2017), but also
from rare coincidences of differentmeteorological vari-
ables of moderate strength. Such compound events
would be very difficult, if not impossible, to identify
from meteorological data alone. Impact modelling is a
way to translate multivariate drivers into a univariate
impact, which therefore simplifies event selection. Sec-
ondly, this approach may lead to the discovery of unex-
pected (combinations of) weather events that result in
extreme impacts (Smith 2011). Nonlinear meteorology-
impact relationships generally hide such ‘Black Swan’
events (Nassim 2007, Ben-Ari et al 2018). Finally, esti-
mates of risk or changes therein can be computed
directly from the full distribution of impact data. If cer-
tain extreme impact events are systematically missed
because of their compound nature or unknown drivers,
resulting estimates of risk may significantly under-
estimate the true risk. Improved risk estimates are useful
to inform society, to plan adaptation strategies and are
valuable for the insurance industry.

Some historic examples of large impact frommod-
erate meteorology include the 2014 Jakarta floods,
which were caused by a 1-in-4 year rainfall event
(Siswanto et al 2015), emergency evacuation in the

Netherlands because of compounding surge and rain-
fall events in 2012 (Van den Hurk et al 2015), the
2013/14 winter in North America in which near-
normal cold air outbreaks caused extensive problems
(VanOldenborgh et al 2015), and a sequence of cloudy
days leading tomuch lower crop yields in SouthAmer-
ica in 2016 (Vera 2018). Previous studies following a
similar ensemble impact approach have, for example,
led to insights in the meteorological drivers leading to
extreme carbon fluxes from forests (Zscheischler et al
2014), trends in economic damage from tropical
cyclones (Gettelman et al 2018), probabilistic esti-
mates of changes in extreme discharge in the river
Thames (New et al 2007) and the weather causing high
risk for European energy security (Van der Wiel et al
2019a).

Crucially, the quality of event selection and con-
sequent analysis depends on two factors: the quality of
the climate simulations, including effects of bias cor-
rection and/or downscaling when applied, and the
quality of the impact model, i.e. its sensitivity to rele-
vant changes in the physical environment and societal
factors. A perfect selection, i.e. selected events could
also have happened in the real world, is only possible if
all processes that influence the impact variable are
modelled in a realistic way. Depending on the impact
variable, drivers may be purely physical or a combina-
tion of physical and societal effects. For example, in
2010 a severe heatwave, drought and wildfires resulted
in grain crop losses in Russia (physical processes,

Figure 2. Schematic diagramof two event selection procedures: (a) selection of events by extremeness of a chosenmeteorological
variable or index, (b) selection of events by extremeness of impact. Curved lines showhypothesised distributions of themeteorological
variable/index (dark blue) and the impact variable (dark red). Shading indicates extreme values, vertical lines in the right panels show
the selected extreme events in the other distribution.
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Lau and Kim 2012), subsequently this resulted in
domestic food price spikes (due to crop losses, but
amplified by political decisions and hoarding by the
population, Kramer 2010, Wegren 2011). Another
example concerns wildfires, which may occur due to
natural causes, but human behaviour can both lead to
locally increased or decreased fire risk (Bowman et al
2011). It is therefore important to considermodel lim-
itations and the assumptions under which the event
selection and analysis are made, both must take a pro-
minent role in any analysis. In section 4 we discuss
these inmore detail.

3. Illustrative example of nonlinear
meteorology-impact relationship

To illustrate the ensemble climate-impact modelling
approach outlined above, we present a case study
regarding the meteorological impacts on potato farm-
ing in the Netherlands. Many factors determine the
success of a farmer: the quality and quantity of yield
(determined by temperature, precipitation, irrigation,
diseases, condition of the land at time of harvest, etc,
Langeveld et al 2003) but also the price at which the
yield can be sold (determined by demand, financial
contracts, success/failure of similar crops in remote
regions, etc, Pavlista and Feuz 2005). We limit the
impact modelling to the physical side, i.e. the hazard,
and do not fully consider the vulnerability and
exposure of the farmer’s success to external or societal
factors.

We simulate a large ensemble of crop yields based
on a large ensemble of climatemodel data. The climate
data were simulated using the EC-Earth global
coupled climate model (Hazeleger et al 2012), for
which two ensembles of 2000years are available
(‘present-day’ and ‘2 °C-warming’, Van der Wiel et al
2019b). Annual potato yields were modelled using

AquaCrop-OS v5.0a (Foster et al 2017), an open-
source crop growth model based on the United
Nations (UN) Food and Agriculture Organization
(FAO) crop model (Vanuytrecht et al 2014, Raes et al
2017). In our illustrative example we assume perfect
water availability, therefore plant growth depends
solely on daily minimum andmaximum temperatures
through the accumulation of growing degree days
(GDDs). Even in this simple experimental setup the
nontrivial relationship between meteorology (daily
temperatures) and impact extremes (low/high yield)
can be demonstrated, including the consequences for
scientific analyses. If we can show the relevance of
ensemble climate-impact modelling in this relatively
simple context, it must certainly be relevant in a more
complex case. Note that it is not our intention tomake
a qualitative assessment of yields in the Netherlands,
we have purposely simplified the weather-crop rela-
tionship to better illustrate the advantages of climate-
impact modelling. More details on the climate model
ensembles and the crop growth model are provided in
the supporting information available online at stacks.
iop.org/ERL/15/034050/mmedia.

The distribution of simulated yields is shown in
figure 3(a). The median simulated dry matter yield is
15.2 tonne/ha; within the ensemble, yields vary from
12.8 tonne/ha to 17.6 tonne/ha. We select extreme
impact events with a 1-in-100 year return period from
each tail in the distribution (i.e. 20 events from
2000 years of data). Based on the simulations, the
1-in-100 year low yield is 13.5 tonne/ha, while the
high yield threshold lies at 16.9 tonne/ha. These
extreme impact events are then identified in a distribu-
tion of cumulative GDDs near the end of the growing
season (figure 3(b)). Seasonal cumulative GDDs were
chosen as the most relevant meteorological variable
because, given our assumptions, plant growth solely
depends on GDDs. The choice of meteorological

Figure 3.Histograms of (a) drymatter yield (tonne/ha) and (b) cumulative GDDs at 1 August (°C). In each distribution the 1-in-
100 year events are selected (notedwith arrows and colour shading). These selected events are identified in the other distribution by
means of short vertical lines of the same colour.

4

Environ. Res. Lett. 15 (2020) 034050

http://stacks.iop.org/ERL/15/034050/mmedia
http://stacks.iop.org/ERL/15/034050/mmedia


variable will influence this analysis. Note that if event
selection is done by impact, it is no longer necessary to
make assumptions regarding the most relevant
meteorological variable(s).

Just three of the selected 20 extreme low yield
events are extreme in meteorological terms (cumula-
tive GDDs exceeding 1752 °C, figure 3(b)). Hence, the
vast majority (85%) of extreme impact events result
from non-extreme meteorological conditions; these
impact events would have been missed if the event
selection had been based on extremeness of the
meteorological variable. Despite the fact that yield and
GDDs are significantly correlated (r=−0.61), this
analysis confirms that meteorological extremes have
only limited bearing on extreme impacts. Other
meteorological variables were tested, the results were
comparable and this conclusion holds.

The selected extreme impact events can now be
investigated in terms of their meteorology: what con-
ditions lead to high impact? In the first month and a
half of the growing season there is no systematic differ-
ence between the seasons of extreme low and extreme
high yield (figure 4(a)). Such differences start to
develop in the second half of May: extreme low yields
seasons experience long relatively warm periods (fast
accumulation of GDDs, positive slope of the time

series in figure 4(a)), the opposite is true for seasons of
extreme high yield. At the harvest date all selected low
yield seasons have a positive cumulative GDD anom-
aly, indicating the growing season was warmer than
normal. Despite this similarity, there is large variety in
the temporal development of GDD accumulation (i.e.
variety in meteorological conditions) that lead to
extreme yields. The temporal evolution of extreme
meteorological seasons (figure 4(b)) is qualitatively
different and more homogeneous: throughout the
growing season all events converge towards the tails of
the distribution. The physical relations in the impact
model of choice can provide insights into the impact
sensitivities. Here, the timing of warm and cool peri-
ods and the amount of canopy cover during such a
period determines biomass growth and end-of-season
yield; the effect of a heatwave late in the growing sea-
son is much bigger than a heatwave early in the grow-
ing season. Such nonlinear effects remain elusive when
impactmechanisms are not explicitly considered.

The use of an impact model in which the mechan-
isms leading to impact (here growth of canopy and
biomass) are considered, enables investigation of
potential nonlinear, complex relationships. Without
explicit modelling, one inevitably must make assump-
tions regarding these relationships or rely on statistical

Figure 4.Ensemble spread for time series of cumulative GDDanomalies in the full ensemble (°C, grey shading). Coloured lines
highlight selected (a) extreme impact seasons (fromfigure 3(a)) and (b) extrememeteorological seasons (fromfigure 3(b)). The
diagonal dashed line indicates the timing of crop harvest.
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relationships. To show the limits of such a statistical
analysis, we compare our ensemble climate-impact
modelling approach to a regressionmodel. The regres-
sion model is based on the statistically significant
relationship between cumulative GDDs and yield
(r=−0.61), and it is trained on 100 randomly selec-
ted years from the full ensemble and then applied to
the full ensemble of weather conditions. Though the
median yield is captured in the regression model, the
range of yields ismuch smaller in this regression-based
ensemble (figure 5(a)). Since nonlinear effects (the
sensitivity to the timing of warm and cool periods) are
not considered, the extremeness of possible impacts is
underestimated. For example, the 1-in-100 year low
yield event is estimated to be 14.1 tonne/ha, instead of
13.5 tonne/ha when impacts are calculated explicitly.
This error leads to an erroneous estimate of risk; from
the explicitly calculated impacts we can determine that
the regression-based estimate of the 1-in-100 years
low yield event is in fact a 1-in-16.4 years event. Note
that in this regression model extreme weather events
lead to extreme impact by design. The the ensemble
climate-impact modelling method gives more accu-
rate estimates of impacts and risks as compared to
purely statistical analyses.

Finally, we illustrate the use of the ensemble cli-
mate-impact modelling approach for questions
regarding changes in extreme impacts due to climate
change. Climate change leads to faster accumulation
of GDDs throughout a growing season, which, with-
out adaptation, leads to a decrease of crop yields
(figure 5(b), futuremedian 14.0 tonne/ha). The lowest
yield in the 2 °C-warming ensemble is 11.9 tonne/ha,
which is outside the range of the present-day ensem-
ble. The change in return times of extreme events can

be computed directly from the ensemble of data. From
a meteorological perspective, the 1-in-100 year high
GDD event is 12.7 timesmore likely in the 2 °C-warm-
ing ensemble (future: 1-in-7.9 years); explicit impact
modelling reveals that extreme low yield events are 22
times more likely due to global warming (future: 1-in-
4.6 years). In this case, the effect of climate change on
changes in the probability of occurrence of the
meteorological extreme events is almost double as
large as the effect of climate change on changes in
probability for extreme impact events. Accurate
assessment of changes in risk for policymaking should
be based on explicit impact calculations rather than be
inferred from changes inmeteorological extremes.

As with any analysis, conclusions from an ensem-
ble climate-impact modelling study are valid given the
assumptions made, and with consideration of the lim-
itations and uncertainties of the climate data and
impact model. Here the strict assumptions were
designed to provide a relatively simple link between
meteorology and extreme impacts. Different assump-
tions or choices for another case study, e.g. rain-fed
potato crops which respond to wet and dry periods
(Langeveld et al 2003) or farmer earnings rather than
yield as impact variable (Pavlista and Feuz 2005),
would add further nonlinear mechanisms increasing
the importance of explicit impactmodelling.

4.Discussion

When doing an analysis following the ensemble
climate-impact modelling approach, careful consid-
eration must be given to the choices and assumptions
involved. First of all, we note the importance of

Figure 5. (a)Histograms of drymatter yield (tonne/ha) for the ensemble climate-impactmodel approach (shaded grey, as in
figure 3(a)) and for an empirical regression analysis (shaded blue). The 1-in-100 year low yield event from explicitlymodelled impacts
is indicated (red arrow and colour shading), the erroneous 1-in-100 year event estimate from the regression analysis is indicated
(yellow dashed line and shading). (b)Histograms for the present-day climate (shaded grey, as in figure 3(a)) and for a climate change
projection (2 °Cglobal warming, shaded blue). The 1-in-100 year low yield event in the present-day climate is indicated (red arrow
and colour shading), the change of the 1-in-100 year event in the climate change projection is indicated (yellow dashed line and
shading).
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choosing a relevant impact variable. This variable
should be as close as possible to the societal or natural
problem of interest. The choice of variable may be
limited by what can be modelled given the availability
and quality of climate and impactmodels.

Coarse climate model resolution, errors in physical
parameterisations andmissing processes result in biases
in simulated meteorological variables. Because most
societal or ecological impacts are in some form depen-
dent on the exceedance of threshold levels (e.g. strong
human heat stress occurs when thermal indices exceed
32 °C, and many biological processes change at part-
icular temperature or precipitation values, Easterling
et al 2000, Bröde et al 2012), these biases need to be
corrected before such simulated data can be used as a
forcing in an impact model. For compound events
multi-variate bias adjustment techniques are preferred
to conserve dependencies between different variables
(Ehret et al 2012, Vrac and Friederichs 2015, Can-
non 2016, Zscheischler et al 2019). When downscaling
techniques are used to increase spatial or temporal reso-
lution, the physical consistency of boundary conditions
and downscaled output need to be considered (Ehret
et al 2012,Maraun 2013,Milly andDunne 2017).

Imperfect parameterisations and missing pro-
cesses in impact models may lead to incorrect sensitiv-
ities of simulated impacts to climate or environmental
variables. A comparison against observed data and
observed climate-impact relationships is necessary to
evaluate the modelling chain. Note however that it is
unlikely that these relationships can be constrained
much for extreme events, given the often limited
lengths of observational time series. A multi-model
approach can help determine whether results are
robust across models and generally helps to reduce
model biases (Tebaldi and Knutti 2007). Ideally, both
the climate modelling and impact modelling (figure 1)
are done with a range of independent models. The ISI-
MIP and AGMIP (Rosenzweig et al 2014, Schellnhuber
et al 2014) projects are examples of such multi-model
climate-impact ensembles.

The case study in section 3 provided an example of
a physical impact, a hazard. To consider all aspects of
societal risk also exposure and vulnerability (E&V)
should be assessed, since not all hazards lead to
impacts: if food can be imported, low yields may not
cause societal problems, and the risk of human heat
stress is much lower if air conditioning is available.
There are a number of ways to include E&V in the
ensemble climate-impact modelling framework. If
possible, it can be added in the impact modelling step
(figure 1), e.g. by adding a financial module (e.g.
Hsiang et al 2017) or by using agent-based models.
Alternatively one can rely on storylines and work out
the impacts of certain hazards given specific E&V con-
ditions (Hazeleger et al 2015).

5. Closing remarks

In this essay we argue that meteorological research
shouldmore frequently be extended with an ensemble
climate-impact modelling approach to assess extreme
climate-induced societal impacts (figure 1). Ensemble
climate-impact modelling provides the tools to
explore scientific questions (which mechanisms drive
impacts?) as well as societal questions (what are
society’s risks?). Without explicit modelling of
impacts, nonlinear interactions between drivers and
impacts are ignored, potentially leading to significant
errors in the estimation of risks. Large ensembles are
required to adequately sample internal variability in
the physical climate system. We have found that such
research is best done in collaboration between physical
climate scientists and climate impact scientists, and
that both disciplines can benefit from such interdisci-
plinary work. Improved understanding of impacts and
risks facilitates potential adaptation of societies to
reduce vulnerability and provides improved informa-
tion to determine the cost of insurance. Given climate
change (IPCC 2013) and increasing human popula-
tions in exposed regions (Vörösmarty et al 2000, Das
Gupta 2014) accurate understanding of impacts and
risks are crucial.
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