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Abstract. Over the last few years, methods have been developed to answer questions on the effect of global
warming on recent extreme events. Many “event attribution” studies have now been performed, a sizeable frac-
tion even within a few weeks of the event, to increase the usefulness of the results. In doing these analyses, it has
become apparent that the attribution itself is only one step of an extended process that leads from the observation
of an extreme event to a successfully communicated attribution statement. In this paper we detail the protocol
that was developed by the World Weather Attribution group over the course of the last 4 years and about two
dozen rapid and slow attribution studies covering warm, cold, wet, dry, and stormy extremes. It starts from the
choice of which events to analyse and proceeds with the event definition, observational analysis, model evalua-
tion, multi-model multi-method attribution, hazard synthesis, vulnerability and exposure analysis and ends with
the communication procedures. This article documents this protocol. It is hoped that our protocol will be useful
in designing future event attribution studies and as a starting point of a protocol for an operational attribution
service.

1 Introduction

In the immediate aftermath of an extreme weather or cli-
mate event, questions are often raised about the role of cli-
mate change, whether and to what extent the event can be
attributed to climate change, and whether the event is a
harbinger of what is to come. The field of extreme event at-
tribution aims to answer these questions and is witnessing
a wealth of new methods and approaches being developed.
Various groups are now actively performing thorough analy-
ses and have produced a multitude of case studies (e.g. Her-
ring et al., 2018). Some types of analyses, notably the attri-
bution of temperature and large-scale precipitation extremes,
have generally been providing consistent results across meth-
ods and cases and have been carried out so frequently that

they may be operationalized. For these event types, the gen-
eral methodology can now be standardized, requiring case-
by-case modification only for specific aspects such as model
evaluation. In a few cases attribution studies have been car-
ried out in near real time by research teams. A protocol on
the design and framework for operational analyses is needed
such that analyses will be comparable. This paper aims to
be a starting point for this. It can also be used as a standard
methodology in academic event attributions.

Recently there have been many overview studies on ex-
treme event attribution. The National Academy of Sciences
(NAS) has written a “state-of-the-science” assessment re-
port (National Academies of Sciences, Engineering, and
Medicine, 2016), discussing the current state of extreme
weather attribution science. Chapter 3 of the NAS report is
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dedicated to methods of event attribution, including obser-
vational analyses, model analyses, and multi-method stud-
ies. The report also gives an overview of operational and/or
rapid attribution systems. Stott et al. (2016), Easterling et al.
(2016), and Otto (2017) give an overview of the state of the
art in event attribution at the time of their publications.

There has also been a lively debate in the literature on
how to define and answer attribution questions. Otto et al.
(2016) state that we are now able to give reliable answers
to the question of whether anthropogenic climate change has
altered the probability of occurrence of some classes of in-
dividual extreme weather events. Jézéquel et al. (2018) pro-
pose to define extreme event attribution as the ensemble of
scientific ways to interpret the question “was this event influ-
enced by climate change?”, focussing on two main methods:
the “risk-based approach” – estimating how the probability
of occurrence for the class of events “at least as extreme as
the current one” has changed due to climate change – and
the “storyline approach” – evaluating the influence of climate
change on (thermo)dynamic processes that led to the specific
event at hand (Shepherd, 2016). We prefer to call the for-
mer a “probability-based approach” (reserving the word risk
for the potential impacts in the real world, a combination of
the probability of creating extreme events with vulnerabil-
ity and exposure of systems affected). Lloyd and Oreskes
(2018) argue that there is no “right” or “wrong” between
these methods (probability- and storyline-based) in any ab-
solute sense; the two approaches are complementary and the
choice of method should depend on which aspect is more rel-
evant for the case at hand. The storyline approach is very rel-
evant for understanding the origin of an individual event and
raising awareness of how climate change is playing a role
in (thermo)dynamic processes that contributed to that partic-
ular extreme and probably influenced its severity. However,
as a specific case cannot be exactly reproduced by a model
and will not occur more than once in the real world, it is
more challenging to define the event robustly. The storyline
approach also does not seek to say anything about the prob-
ability of an event or how the frequency of similar extremes
is changing.

In order to achieve the goals of operational attribution,
with numerical results actionable by stakeholders, the prob-
ability framing is adopted here for standardizing attribution
analyses. This approach seeks to determine whether the fre-
quency and/or magnitude of a class of extremes is chang-
ing due to anthropogenic climate change, expressed as the
probability ratio (sometimes referred to as risk ratio, but
as we define “risk” to refer to the total impact of an event
rather than the probability of the hazard (Field et al., 2012,
see also Sect. 8), the term “probability ratio” is preferable)
PR= p1/p0, with p1 the probability of an event as strong
as or stronger than the extreme event in the current climate
and p0 the probability in a counterfactual climate without an-
thropogenic emissions. The latter may be approximated by a
past climate, e.g. the late 19th century. Similar to the story-

line approach, probability- (or risk-)based studies are typi-
cally inspired by a recent event, but an arbitrary threshold to
define an event class can also be used. The probability-/risk-
based approach can potentially complement climate projec-
tions and therefore be useful for decision makers, who want
a robust assessment of how event frequencies/magnitudes
are changing for planning purposes, often based on specific
thresholds. There is a large body of literature and method-
ological development of probability-/risk-based approaches
to draw upon. This lends itself to the standardization of
a rapid-attribution approach and to the early development
phase of an operational attribution service.

A similar framing to the shift in probability, using the same
methodological approach (Otto et al., 2012), is the change in
magnitude or intensity for a given probability or return pe-
riod, which we denote by 1I . The two correspond to each
other if the probabilities decrease with intensity, which is
usually the case. A shift of the tail of the probability den-
sity function (PDF) to higher intensities is to first order the
same as a shift to higher probabilities (Otto et al., 2012).

The storyline approach could also provide an interesting,
more qualitative angle, as it provides a conditional analy-
sis given a number of features of the event such as the at-
mospheric flow. However, such an approach is not easily
automated and requires a research mindset to interpret re-
sults. As a result, this can probably not be included in an
operational setting in the current state of science and prac-
tices. This probably requires that the storyline approach be
demonstrated in numerous cases, so reliable and easy inter-
pretations can be drawn by operators. Recent literature also
provides methodologies to combine both approaches (Shep-
herd, 2016), but applications of this are currently very limited
(Cheng et al., 2018).

In a recent study, Vautard et al. (2016) also proposed a
method, between the probability and storyline approaches,
separating thermodynamical and dynamical contributions to
changes in the probability of an event, which can be con-
ducted on top of a probability-based analysis and also pro-
vides a framework for analysing the processes behind the
event in question. Such an additional analysis could also be
added in the future when more case studies will be carried
out for a better understanding.

Often the attribution question is followed by “what does
this mean for the future?” The same techniques that are de-
scribed in this paper can be used to answer that question by
extrapolating observed trends to the (near) future and using
model results for future climates whenever these are avail-
able. If possible we recommend that this is included in the
attribution study to maximize the usefulness of such an anal-
ysis.

Another way to describe the spectrum of framings is from
as inclusive as possible, treating all similar extremes equally,
to as specific as possible, analysing just the event that oc-
curred itself. In terms of modelling, this translates to us-
ing coupled ocean–atmosphere models or even earth sys-
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tem models that just vary the concentrations or emissions of
greenhouse gases and aerosols, via sea surface temperature
(SST) forced models that prescribe the state of the ocean at
the time of the extreme, to regional or global models nudged
to the exact configuration that gave rise to the extreme. It
should be kept in mind that keeping some conditions fixed
to the observed state rather than integrating over all possible
values has been shown to potentially bias the attribution re-
sults. SST-forced models have been shown to underestimate
temperature variability (Fischer et al., 2018), although the
effect on extremes is much smaller (Uhe et al., 2016). This
setup also often produces the wrong sign heat fluxes, which
can give rise to biases in the circulation, e.g. over the Indian
Ocean (Copsey et al., 2006).

Fixing the boundary conditions even more by running a re-
gional model or data assimilation techniques runs the risk of
a selection bias: as the boundary conditions were (close to)
optimal for the extreme to occur, any perturbation, includ-
ing a lowering of the temperature, can lower the probability
of the event occurring (Cipullo, 2013; Omrani et al., 2020).
The same can happen by raising the temperature, so a nec-
essary check is to also consider a warmer climate and check
the linearity of the response. If the intensity or probability in
the current climate is higher than in the past and future cli-
mates, this is a sign that this selection bias is relevant and the
change in probability from the colder climate may be poorly
characterized (e.g. Meredith et al., 2015). To avoid these is-
sues we choose to include only model experiments from the
inclusive end of the spectrum, coupled and SST-forced ex-
periments, keeping the different framings and shortcomings
of these two classes in mind.

An increasing number of attribution analyses on individ-
ual extreme events are being carried out every year. World
Weather Attribution (WWA) is an initiative which has con-
ducted dozens of rapid extreme event attribution studies as
well as non-rapid analyses (Otto et al., 2015; King et al.,
2015; Vautard et al., 2015; King et al., 2016; Uhe et al.,
2016; van der Wiel et al., 2017; van Oldenborgh et al.,
2016b; Sippel et al., 2016; Philip et al., 2018a; van Old-
enborgh et al., 2017; Uhe et al., 2018; Philip et al., 2018c;
Otto et al., 2018a; van Oldenborgh et al., 2018; Philip et al.,
2018b; Kew et al., 2019; Otto et al., 2018c; Vautard et al.,
2019); see http://www.worldweatherattribution.org (last ac-
cess: 11 May 2020) for a list of all analyses. These rapid and
slower attribution studies have been on hot and cold tempera-
ture extremes, meteorological drought (lack of precipitation),
flooding (studied as flood-inducing extreme precipitation),
and wind storms.

The most recent WWA (rapid) attribution studies have
used an eight-step multi-method approach including both ob-
servational and model data. A protocol was developed based
on this experience over the past few years and has been
proven to work well. The eight steps in this protocol are the
analysis trigger, the event definition, trend detection, model
evaluation, multi-method multi-model attribution, synthesis

of the hazard, vulnerability and exposure analysis, and com-
munication. In this paper these eight steps of the protocol
used by WWA are documented in detail. Adopting this ap-
proach facilitates reproduction of analyses and consistency in
methodology when conducting new extreme event analyses.
The protocol can also be used in rapid analyses and therefore
can potentially also be used by an operational service. This
protocol describes the present WWA method, which is not
necessarily the only valid method. Given that there are open
issues and evolving techniques, we will seek to amend this
protocol following advances made in the field of attribution.

In the WWA method described in this protocol we use the
state-of-the-art observational and model data available at the
moment of the event. These observational datasets and mod-
els can each have shortcomings of their own. The methodol-
ogy described in this article acknowledges the present short-
comings and provides guidelines on how to arrive at attribu-
tion statements that are as reliable and robust as possible, e.g.
by comparing different observational datasets and reanaly-
ses, by evaluating the models against the observations, and
by using the model spread.

The remainder of the paper describes the eight steps that
form the protocol, followed by a discussion and conclusion.

2 Step 1: Analysis trigger

The first step is identifying that there is an event to anal-
yse and deciding whether the attribution analysis is feasible.
This step has both theoretical and practical considerations.
The event selection should not be based on the expected out-
come of the analysis but only on the severity of the impacts
of the extreme event. This way the collective results of the
event attribution studies will be less biased. Even with an ob-
jective event selection criterion, events that have become less
likely are studied less as they appear less often. This leads to
a trend bias towards more extreme events in any collection of
event attribution studies. This trend is exacerbated if events
are selected on an expected positive outcome, which often
seems to be the case in the literature.

On the practical side, as there is a limited capacity to do
attribution studies, there have to be criteria on when to start
a study and when not. One solution is to have a formal pro-
cedure based on the impact of the event based on objective
criteria such as the number of deaths or people affected, but
criteria regarding economical or ecosystem losses can also
be determined. Although estimates of these quantities can
be very uncertain during the event or a few days afterwards
when the question is often posed, they are nowadays suffi-
cient to estimate whether the event will satisfy the criteria.
When using this approach it is advisable to have a combi-
nation of triggers that are based on extreme absolute loss as
well as percentage loss. Including percentage of population
lost or percentage of economic impact will help to reduce the
analysis bias toward events in countries with larger popula-
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tions or larger economies, which results when relying only
on absolute losses.

The other solution is to have a demand-driven procedure,
where a request is entertained when a customer, for instance
a national weather service or non-governmental organization
(NGO), asks for a study to be done because it is of impor-
tance to a country, can inform disaster recovery planning, or
the question of the influence of climate change on an extreme
event is being discussed in the media. In practice, both pro-
cedures, objective and demand-driven, are used. It is helpful
to ensure that studies are not only based on media demand, as
this will bias analysis toward higher-interest geographies, ex-
treme absolute loss (versus a percentage as described above),
and rapid onset disasters, a challenge which has been well
documented throughout the past few decades.

A positive analysis trigger is a prerequisite for an attribu-
tion analysis to be performed. However, the analysis should
also be feasible. The criteria for this, in the form of questions,
are the following.

– Is it in a category of events for which peer-reviewed
methods are available or are being developed in this
study?

– Are there local partners to obtain local expertise?

– Are there enough historical observations?

– Can the models represent this extreme?

– Is there enough manpower and time available to carry
out all eight steps of the protocol?

The decisions made in this first step need to be written down
clearly such that it is clear why an event was analysed or not.
If in this step the decision is made to continue, the analysis
can proceed to the next step.

3 Step 2: Event definition

The second step is the event definition: fixing the spatial and
temporal definition of the event and the parameter(s) to be
analysed. As discussed above, this is done in a class-based
way, which means that the probability of an event as severe
as this one or stronger is computed in (simulations of) the
current climate and compared to simulations of a counterfac-
tual climate without anthropogenic emissions or the climate
of the 19th century. This requires a one-dimensional defini-
tion of the event severity. For example,

– maximum temperature Tmax > T0 (◦C),

– heat index H >H0 (◦C),

– precipitation P > Z (millimetres per N days), and

– discharge D >D0 (m3 s−1),

where T0, H0, Z, and D0 are constants determined by the
extreme event that is analysed and, in contrast, Tmax,H,P ,
and D are viewed as random variables. The attribution ques-
tion is then stated: “how has the probability of an event above
the threshold set by the current event changed due to anthro-
pogenic emissions (or other factors)?”. These probabilities p
are often expressed as return periods τ = 1/p.

3.1 Goal of the attribution study

There are three approaches to the event definition: maximiz-
ing the signature of climate change, e.g. by fingerprinting
techniques, where the event is defined such that the signal-
to-noise ratio is optimized by giving more weight to areas
with larger trends or lower variability (Bindoff et al., 2013),
maximizing the meteorological extremity of the event (Cat-
tiaux and Ribes, 2018), and defining it to correspond to the
impacts on society or ecosystems (van der Wiel et al., 2020).
The last two goals are used here as these correspond to the
types of attribution questions that are posed. They often over-
lap, as systems are usually more vulnerable to rarer events.

3.2 Choice of variable

The choice of physical parameters is either the most extreme
one, e.g. a record-breaking event, or a variable as close to the
impacts, e.g. a disaster, as feasibly possible. This could either
be a meteorological variable, such as maximum temperature
or precipitation, or one derived from multiple meteorologi-
cal variables, such as a heat index or runoff. For compound
events a physical impact model can be used to linearize the
extreme.

The parameter should be observed and available in model
output or computable from observed or modelled variables.

Besides the meteorological factors, vulnerability and ex-
posure almost always contribute to the impact of a weather
extreme. There have been attempts to include these in the
event definition and attribute losses in lives or money rather
than physical variables (e.g. Mitchell et al., 2016; Schaller
et al., 2016; Frame et al., 2020). However, the damage of a
weather extreme on society depends strongly on its prepared-
ness (Field et al., 2012), which often changes more rapidly
over time than the hazard does due to climate change. This
makes the transfer function hard to determine and the as-
sumption that it is constant over time, which is inherent in an
analysis of only climate factors, hard to defend. For exam-
ple, excess mortality due to high temperatures in Paris and
Barcelona has more than halved after heat plans were intro-
duced after the 2003 heat wave, whereas it stayed constant or
even increased somewhat in cities without heat plans Fouillet
et al. (2008); de’ Donato et al. (2015).
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3.3 Choice of area

For the spatial definition of the event two things are impor-
tant: first, the relation to the impact of the event, and second,
the homogeneity of the area. In defining the spatial extent,
the decisions made should take into account local knowledge
about terrain, natural boundaries, homogeneous climatologi-
cal zones, etc. Limitations stemming from knowledge on and
validation of climate model data (see also Sect. 5) can feed
back into this step. Here examples are provided for a few
types of extremes.

For cold waves and heat waves, health impacts are local, so
a local definition using station data corresponds well to those
impacts (e.g. van Oldenborgh et al., 2015; Mitchell et al.,
2016; van Oldenborgh et al., 2018; Kew et al., 2019). Heat
has much sharper land–sea contrasts than can be resolved
by climate models, so coastal stations cannot be represented
by current climate models and therefore are not suitable for
attribution unless specific statistical downscaling techniques
are used. Impacts on power management are often national,
so that a country-wide average is indicated if these are most
relevant (Tobin et al., 2018). Taking large-scale averages re-
duces the noise in the observations and model estimates rel-
ative to the trends and hence increases the probability ratio
(Fischer et al., 2013; Uhe et al., 2016), so these maximize
the effect of climate change.

Droughts are influenced by several factors, mostly a lack
of precipitation, but are often strengthened by factors such as
high temperatures which enhance (potential) evapotranspira-
tion. However, their attribution has been studied mostly only
in terms of lack of precipitation (meteorological drought),
in part due to poor model performance in representing rel-
evant land surface processes, and also due to inadequacies
in other metrics used to characterize drought. Such an event
is always a regional phenomenon. Philip et al. (2018c) stud-
ied the drought in Ethiopia in 2015. The event was then de-
fined by a box average, where the boundaries of the box were
chosen based on the homogeneity of climatological rainfall
and topography; see Fig. 1. Using local knowledge the au-
thors decided not to extend the box further to the north or
east, which would risk introducing influences from the Red
Sea; in the west topography is the natural boundary. Fields
averaged over the box were chosen to be representative of
the large-scale event. On top of that three stations were used
to present local results in the dry region. In a similar anal-
ysis of drought in Kenya (Uhe et al., 2018) multiple boxes
with different drought durations were chosen based on local
knowledge. In studies of drought in São Paulo (Otto et al.,
2015) and Cape Town (Otto et al., 2018c), study areas were
chosen to represent the areas over which water was collected
for those cities.

For flooding studies ideally hydrological models should be
used to attribute water level or maximum run-off at the point
where the flooding caused impacts. This has been done for
a few slow studies (Schaller et al., 2016; Philip et al., 2019)

Figure 1. Event definition of the drought event in February–
September 2015 in Ethiopia; the box shows the spatial extent of
the event definition and the circles show the three station loca-
tions. Colours show the anomaly in precipitation (CHIRPS, pre-
cipitation minus 1981–2010 climatology) averaged over February–
September 2015 (mmd−1). See Philip et al. (2018c) for more de-
tails.

but is not yet commonplace. In many cases precipitation av-
eraged over the catchment area, or an approximation of it, has
been used as a proxy (van Oldenborgh et al., 2012b; Schaller
et al., 2014; van der Wiel et al., 2017; van Oldenborgh et al.,
2017; Otto et al., 2018a). Philip et al. (2019) showed that
for the case of flooding in Bangladesh on the Brahmaputra
River, the results for time- and space-averaged precipitation
and discharge were comparable (Fig. 2).

For small-scale precipitation events it is often feasible to
pool observations or grid points over a homogeneous region
that is larger than the events in order to increase the number
of independent events and hence give more precise results.
Alternatively, the spatial maximum over this region can be
taken; this selects more extreme events than at individual or
pooled stations (grid points). A useful homogeneity check
is to make a map of the mean of the maximum N -day av-
erage of precipitation and require that this does not vary by
more than e.g. 20 % over the selected region. This is often the
case for flat terrain. Remaining differences can be reduced
by scaling each series by this mean before the rest of the
analysis. If the maximum is used, the number of stations in
the region should be almost constant. The spatial maximum
was used as event definition in Vautard et al. (2015), Eden
et al. (2016), van der Wiel et al. (2017), van Oldenborgh et al.
(2017), Eden et al. (2018), and Luu et al. (2018).
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Figure 2. Synthesis of the probability ratios between pre-industrial and 2017 of the precipitation (left) and discharge (right) results. Dark blue
is observations, red is climate model ensembles, and the weighted average is shown in purple. The ranges of the models are not compatible
with each other, pointing to model uncertainty playing a role over the natural variability. The weighted average has been inflated by factors
of 3.89 and 3.45 for precipitation and discharge respectively to account for the model spread. Reproduced from Philip et al. (2019) under the
licence agreement at https://creativecommons.org/licenses/by/4.0/ (last access: 31 October 2018); see original paper for more details.

3.4 Choice of timescale

Similarly, the timescale of the event should ideally corre-
spond to the impacts as well, which can differ from location
to location due to different vulnerabilities. Limitations on the
timescale stemming from knowledge and validation of cli-
mate model data (see also Sect. 5) can feed back into this
step. If the main effect of heat in India is on outdoor labour-
ers, instantaneous afternoon temperature or heat index would
be obvious choices. However, if the literature suggests that
longer-duration heat waves have correspondingly more im-
pact, such as in Europe (D’Ippoliti et al., 2010) probably be-
cause the vulnerable population there is elderly and indoors,
a 3-day average may be more appropriate.

For meteorological droughts, a precipitation deficit over
a number of months or years can be taken, which is avail-
able from global climate models. However, for agricultural
or hydrological droughts, hydrological models must be used
to get soil moisture or river discharge data. This is often chal-
lenging due to lack of long-term observational data (e.g. Kew
et al., 2020; Kam et al., 2018) and a mismatch of the horizon-
tal scale (Kam et al., 2018). For flooding the situation is sim-
ilar: instantaneous water levels are usually a good measure.
If those observations are not available, precipitation averaged
over the response time of the basin can be a good substitute
(Philip et al., 2019). Sometimes the relevant timescale is too
short to be resolved by observations and models, for instance
a flash flood event from a thunderstorm lasting 1 h. In that
case the nearest useful scale must necessarily be chosen, in
this case often daily precipitation.

Finally, the seasonality of the event has to be taken into
account. Most often, the impact of an event is independent
of the season in which it occurs, so that all seasons can
be included in the definition (highest temperature, precipita-
tion, etc., of the year). However, sometimes the impacts vary
with the seasons, usually because of missing physical im-
pact modelling. For instance, the 2013 rains in central Europe
led to more severe flooding than other more extreme rainfall

events in the area because they occurred early in the sum-
mer. In this case the rain fell on saturated soils and snow that
melted, so that the amount of runoff was much larger than
for equal-size precipitation extremes in late summer. With-
out a hydrological model describing these factors, restricting
the analysis to early summer avoided the comparison with
late-summer events (Schaller et al., 2014).

The distribution of temperature extremes also varies
greatly with the seasonal cycle, so that the analysis has to
be restricted to certain months if it is not a heat wave in the
summer season or a cold wave in the winter season. If the ex-
tremes occur in a season with a strong seasonal cycle, mete-
orological extremes are best studied as anomalies. However,
the impacts are usually dependent on absolute thresholds of
temperature.

3.5 Motivation of choices

For an attribution study in response to a high-impact extreme
meteorological event, both the spatial and temporal defini-
tions can either be based on the impacts or on the rarity of the
meteorological event. The return period of the event can be
very sensitive to this choice. A definition that optimizes the
location and duration on the meteorological extreme event
logically results in very high values for the return period.
On the other hand, people can experience large impacts even
when the event is not very extreme meteorologically (e.g.
Siswanto et al., 2015), and meteorologically extreme events
can have relatively small impacts (e.g. Sun et al., 2018; van
Oldenborgh et al., 2018). The choice whether to optimize the
event definition for meteorological rarity or to describe the
impacts should be documented.

At the end of step 2 the event definition should be written
down clearly in terms of variable (e.g. maximum daily tem-
peratures, daily precipitation), spatial extent (area average or
point location), temporal extent (e.g. 3-day average, seasonal
average), and over which season (e.g. summer, rainy season,
whole year). Examples are the following.
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– The lowest minimum temperature of the year at Chicago
Midway station (and De Bilt) (van Oldenborgh et al.,
2015),

– the highest 3-day averaged station precipitation along
the US Gulf Coast, 29–31◦ N, 85–95◦W (van der Wiel
et al., 2017),

– the maximum 3-day averaged precipitation averaged
over the Seine (and Loire) basin in April–June (Philip
et al., 2018b), and

– the lowest 3-year averaged precipitation around Cape
Town, 35–31◦ S, 18–21◦ E.

4 Step 3: Observed probability and trend

The third step is trend detection. This is the process of de-
termining whether there is a trend detectable above the nat-
ural variability in observational data for the class of events
defined in step 2. The return period of the event in the cur-
rent climate conditions can also be determined from obser-
vations at this stage. A trend may not yet have emerged from
the noise in the observations even though the probability of
the event has changed. So the absence of a significant trend
would not lead by itself to a non-attribution statement. It is
important to note that detected trends may arise for a differ-
ent reason than a change in global climate forcing.

4.1 Observational data

The first task is to analyse observational data. The ideal sit-
uation is to have 150 years of homogeneous observations up
to and including the event under analysis. However, this is
hardly ever the case, and one is often left with shorter (or in-
homogeneous) series in practice. Given the limited amount
of data available, a major consideration is to use them as ef-
fectively as possible. Considerations are outlined below.

For observations there are two types of data: local and
regional. Local data mainly consist of station data time se-
ries. Regional data can be obtained from gridded observa-
tions (statistically interpolated station observations) and re-
analyses (using a weather model to assimilate all kinds of
observations). Satellite-derived products have not yet proven
themselves to be useful due to their short records, often with
discontinuities, and large biases compared to ground obser-
vations. Radar observations of precipitation are more reliable
when calibrated against station data but do not extend far
enough back in time for trend analysis.

For extremes, station data are in general more reliable than
gridded data because gridded data may contain information
from varying numbers of stations per grid box rather than a
uniform set of stations. This affects the variability of the grid-
ded data time series (Hofstra et al., 2009, 2010). If the dis-
tance between stations is larger than the decorrelation scale,
the variability in the interpolated grid boxes will be too small

(King et al., 2013a). We discuss the two extreme scenarios
of numbers of stations per grid box. On the one hand, in the
extreme case that no station information is available and val-
ues are set to climatology, the analysis will give climatology
with no variability. On the other hand, if the number of sta-
tions per grid box is large, averaging over these stations will
result in averaging of local-scale variability with the effect of
reducing overall variability. We recommend always checking
the documentation and meta-data of the datasets on informa-
tion about the number of stations per grid box and making
choices accordingly. This information is often available as a
separate field.

Station data are often inhomogeneous in time due to site
relocations or changes in the observational methods (Fig. 3a),
not to mention misplaced decimal points (Fig. 3b). Com-
prehensive quality control should eliminate the latter. When
available, homogenized station data should be used, even
though the homogenization is often only in the mean, not
the variability. Long time series such as Central England
Temperature (Parker et al., 1992; Manley, 1974) (starting in
1659) and the Dutch De Bilt series (starting in 1706) have
larger variability before the construction of the modern-day
observation networks in the early 20th century (Fig. 3c, d)
and hence cannot be used for studying extremes before that.
Another insidious problem is trends in missing data: a de-
crease in missing data gives rise to an increase in the proba-
bility of observing extremes and hence a spurious trend (van
Oldenborgh et al., 2018). If there is an obvious discontinuity
in the mean or variability early on in the dataset, often the
dataset can still be used if the years before the discontinuity
are omitted.

If the decorrelation length of the extreme under investiga-
tion is smaller than the area over which the properties are
homogenous, station data can be pooled to give more de-
grees of freedom than years of data (Buishand, 1991; Katz
et al., 2002). This is often the case for convective precipita-
tion events in summer (Vautard et al., 2015; Eden et al., 2016,
2018) but also for 1-day extreme rainfall on the south-eastern
coast of India (van Oldenborgh et al., 2016b) and 3-day ex-
treme rainfall events on the US Gulf Coast (van der Wiel
et al., 2017; van Oldenborgh et al., 2017). Care has to be
taken to take remaining spatial dependencies into account by
separating the stations sufficiently and taking moving spatial
blocks in the bootstrap procedure (see Sect. 4.2).

For a regional average a gridded dataset is usually used.
An algorithm weights the station data according to their spa-
tial distribution. As noted above, in many cases, the quality of
gridded data varies regionally, either in the historical length
of the observational series used as input or in the temporally
varying number of stations per grid box. Sharp changes in
data quality can occur along country borders, for example.
If the gridded dataset is the principal observational data to
be used in the analysis, this should be taken into account in
the spatial event definition. Sometimes a trade-off between
quality and impacts can be made so that the area defining
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Figure 3. Examples of problems with time series, reproduced on the Climate Explorer at https://climexp.knmi.nl (last access: 31 Octo-
ber 2018). (a) A 2 ◦C inhomogeneity in the highest maximum temperature of the year, TXx, in 1950–1951 (De Bilt before homogenization;
Brandsma, 2016), (b) precipitation at a station illustrating displaced decimal points giving an unrealistic extreme of 660 mmd−1 that does
not show up in satellite data, disaster databases or newspapers, and a factor 10 the other way in 2001–2003, (c) 30-year running standard
deviation of annual mean Central England Temperature (Manley, 1974; King et al., 2015), and (d) the same for the De Bilt temperature (van
Engelen and Nellestijn, 1996).

the event is restricted to a region that is more spatially ho-
mogeneous in data quality yet is still representative, even if
not optimal, for the impacts. For example, Kew et al. (2019)
shifted the northern boundary of the long–lat box used for a
heat-wave analysis southward to omit a region of poor data
homogeneity.

Reanalysis data, which are data from a meteorological
model with observational data assimilated into it, incorpo-
rate information about many variables rather than only one.
In contrast to the statistical interpolation used to grid obser-
vational analyses, which would tend to spatially smooth a
data field, a meteorological model can generate extremes be-
tween point observations (see Hofstra et al., 2009, 2010, for
the effect of interpolation on extremes). For this reason, and
especially in regions where in situ observations are sparse,
we assume that reanalysis data generally contain a more ho-
mogeneous representation of extremes in time than gridded
observations as long as the extremes are representable by the
underlying model, which is e.g. not the case for convective
events, so that precipitation in the tropics is not well repre-
sented (e.g. Kharin et al., 2005).

The reliability of the data should be at least checked by
visual inspection (e.g. Sillmann et al., 2013) and by gather-
ing information on the amount and quality of data used in
gridded datasets (observational data and reanalyses). Often
information on how the quality of a dataset varies in time
or space is given in the dataset’s documentation or web-
page or can be obtained by contacting the developers directly.
Care has to be taken that there is no temporal discontinuity.

For example, with the advance of satellite data in the early
1980s, observational-based products that cover some period
before and after this date may suffer from a discontinuity or
quality differences. If one solely uses data from the 1980s
onwards, the statistical uncertainty in trends often becomes
large due to the relative short length of the time series. As
an alternative, one may consider using long reanalysis prod-
ucts based on a homogeneous subset of data, usually SST and
surface pressure observations, disregarding satellite data (e.g.
Compo et al., 2011; Laloyaux et al., 2017). These reanalyses
that use a subset of the available observational data provide
homogeneity over the long time periods required, though at
the expense of accuracy in recent decades.

The choice to use local, regional, or both types of data of-
ten depends on the availability of a reliable and homogeneous
dataset and needs expert judgement. If there are no reliable
and homogeneous observational data of the event itself or of
the history of similar events, the attribution study cannot be
carried out.

4.2 Statistical method

The previous step has provided a long time series up to and
including the event. There are many ways to detect changes
in the frequency of extreme events in this series. The simplest
is to divide the time range into two or more blocks and count
threshold exceedances. This has the advantage of making no
assumptions about the statistical distributions of the variable
in question but has in general a low signal-to-noise ratio; i.e.
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the uncertainties are large. The statistical uncertainties due
to the variability of the weather can be reduced by making
assumptions about the shape of the distribution and the kind
of changes that are most likely. Within the observational data
it can be verified that some of these assumptions cannot be
rejected. For others this requires long time series or large en-
sembles of model data (see Sect. 6).

The main assumptions we make are the following (see also
van der Wiel et al., 2017), and these are topics of ongoing
research.

– It is assumed the events follow a theoretical distribution,
such as a Gamma distribution (based on all data) or one
of the extreme value distributions discussed below that
is based on events in the tail only. If the event is not
very extreme, a normal distribution can also be used. In
general this implies that we assume that more moderate
extremes behave the same as the more intense extreme
that is under investigation, and these provide the higher
number of events necessary to detect a trend. A com-
parison of the observed cumulative distribution func-
tion (CDF) to the fitted distribution shows when this
assumption does not hold. Depending on the interest
field, several distributions can be tested on how well the
sample data are fitted by these different distributions by
evaluating a quantile–quantile plot or, equivalently, a re-
turn time plot that shows the same information but em-
phasizes the tail. Gaussian distributions are often seen
not to describe the tails well. A choice is made based on
the comparison.

– It is assumed that the main changes in the distribution
are due to global warming. In the global mean temper-
ature, the influence of natural forcings over the last 70
or 120 years has been very small compared to the an-
thropogenic forcings (Bindoff et al., 2013). If we take
the smoothed global mean temperature as a covariate,
both anthropogenic and natural forcings are included.
Note that while using smoothed global mean temper-
ature we cannot attribute changes to local forcings,
such as aerosols, irrigation, and roughness changes,
which can also have large influences on extremes (Wild,
2009; Puma and Cook, 2010; Vautard et al., 2010). This
should always be kept in mind and checked when pos-
sible. If factors other than global warming are impor-
tant for changes in the distribution, attribution to global
warming alone is not appropriate and additional investi-
gation should be conducted. See for instance the analy-
ses of heat in India, in which air pollution and irrigation
are as important (van Oldenborgh et al., 2018), and of
winter storms in Europe, where roughness appears to
be much more important than climate change (Vautard
et al., 2019), but also land surface changes in heat ex-
tremes in the central US (Cowan et al., 2020).

– It is assumed that the distribution of temperature ex-
tremes shifts due to global warming without chang-
ing the shape (σ,ξ constant), and for precipitation and
wind extremes the distribution scales (σ/µ,ξ constant),
which keeps the distribution positive-definite. In the lat-
ter case an exponential dependence on temperature is
inspired by the Clausius–Clapeyron relation. The winds
in the more extreme smaller-scale wind storms such as
tropical cyclones are to a large extent driven by the en-
ergy release. For midlatitude wind storms, which usu-
ally show small trends (Vautard et al., 2019), this is a
preliminary first-order approximation that ensures that
the PDF stays positive-definite, in contrast to the lin-
ear shift that is sometimes used. At the moment these
assumptions can only be tested using large amounts of
model data and only if the data show a forced trend.

– The fits assume all years are independent. In some parts
of the world decadal variability is stronger than the vari-
ability on the weather scales integrated to decadal vari-
ability (which decreased with the square root of the ratio
of the weather timescale and the decadal timescale van
Oldenborgh et al., 2012a), and this should be taken into
account there.

– It is assumed that if the decorrelation length of the ex-
treme is smaller than the region in which they occur
with the same properties, the events can be pooled spa-
tially to increase their numbers, taking spatial depen-
dencies into account in the uncertainty estimates. Alter-
natively, the spatial maximum can focus the fits further
towards the extreme tail of the distribution (Eden et al.,
2016; van der Wiel et al., 2017; van Oldenborgh et al.,
2017).

The result of the fit to a statistical model provides an estimate
of the return period of the event of interest and whether there
is a trend outside the range of deviations expected by natural
variability. Different classes of events require different types
of statistical functions. In the next subsections some possi-
ble distributions are explained that can be used for different
types of events (e.g. Coles, 2001; Katz et al., 2002). Confi-
dence intervals (CIs) have to be estimated: a straightforward
method is to use a non-parametric bootstrap, i.e. repeating
the fit a large number of times (1000 or so) with samples of
(covariate, observation) pairs drawn from the original series
with replacement. If there is no a priori evidence of which
sign the influence of anthropogenic climate change has on
the extreme, a two-sided 95 % CI is appropriate, from 2.5 %
to 97.5 % of the bootstrap sample. However, often we know
the sign from previous research, e.g. in most regions warming
for temperature extremes and intensification of short precipi-
tation extremes when there is enough moisture availability in
the absence of overriding dynamical changes. In those cases
it may be appropriate to use a one-sided CI, from 5 % of the
bootstrap sample.
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A thorny question is whether the observed extreme event
that triggered the analysis should be used in the fit. It has
been observed and hence adds to our knowledge of the dis-
tribution of extremes. However, including it also biases the
trend towards the extreme as the analysis would not have
been done without it: a very hot extreme will give a higher
trend. In previous analyses we have chosen not to include
the event and answer the question whether we could have
known before the event took place whether the probability of
this event occurring has changed. We do use the information
that it occurred by demanding that the distribution has a non-
zero probability of the observed event occurring, also for all
bootstrap samples. This primarily affects the uncertainty es-
timates of temperature extremes, which usually have upper
bounds.

4.2.1 Gaussian

Ordinary least-square trend fitting assumes the data are nor-
mally distributed. This distribution is also called a Gaussian
distribution. Following the central limit theorem, this often
describes aggregate quantities such as large-area seasonal
means well and has the advantage of having only two pa-
rameters to fit plus the trend. However, the tails of the nor-
mal distribution decrease as exp(−z2), which is usually more
quickly than reality. This implies that this distribution can
only be used for moderate extremes with low-return periods
that are not in this tail. If a comparison of the empirical CDF
with the fitted one indicates that the tails above the event are
not fitted well by the Gaussian, a more realistic description
of the extremes is needed.

4.2.2 GPD

The generalized Pareto distribution (GPD) is used for ex-
tremes above or below a threshold; this method is also re-
ferred to as peak over threshold (POT). The GPD gives a
three-parameter description of the tail of the distribution. A
low tail is first converted to a high tail by multiplying the
variable by −1. The high tail of the observed distributions is
then fitted with

H (µ− x)= 1−
(

1−
ξx

σ

)(−1/ξ )

, (1)

with x the temperature or precipitation, µ the threshold, σ
the scale parameter, and ξ the shape parameter determining
the tail behaviour. The shape parameter ξ is considered to be
unphysical if it is very large (a larger-scale parameter gives
a fatter tail). During the fitting procedure, unphysically large
shape parameters have to be suppressed, e.g. by a penalty
term that keeps them roughly in the range |ξ | ≤ 0.4 (Katz
et al., 2002). For the low extremes of precipitation, the fit is
constrained to have zero probability below zero precipitation
(ξ < 0,σ < µξ ). As mentioned above, for negative shape pa-

rameter ξ we also demand that the observed event is below
the upper limit.

The POT method can be used for all timescales, but it has
mostly been employed for long timescales, e.g. a monthly
mean high temperature or a seasonal mean drought (low
precipitation values), if a fit to all data with a Gaussian
or Gamma function is not appropriate. To apply the POT
method to daily data, the threshold exceedances have to be
declustered into distinct events, which is not easy to do auto-
matically, so we prefer to compute block maxima and fit to a
GEV function.

The choice of threshold in the POT method depends on the
trade-off between setting it high to be closer to the limit in
which the GPD applies and low to have enough events above
the threshold to do a sensible fit. For annual values this im-
plies fitting to the highest 20 % or 10 % of the distribution.
This is not very extreme, so the justification from extreme
value theory is not very strong. However, it can be seen as a
good empirical choice, i.e. a function with enough flexibility
to be able to describe the data even if its use cannot be jus-
tified on theoretical grounds. Whether the function describes
the empirical distribution well can be seen in a quantile–
quantile plot or equivalently the return time plot that contains
the same information but stresses the extremes. An objective
statistical goodness-of-fit test is recommended in addition to
the visual inspection of the plots. We try to explore different
thresholds to the extent the data allow as recommended by
Coles (2001). If the results are not stable, they are not used.
An example is the description of low seasonal precipitation
extremes for which a Gaussian distribution would give posi-
tive probabilities for negative precipitation. In the GPD fit we
avoid this by demanding a lower bound that is zero or higher.

4.2.3 GEV

The generalized extreme value (GEV) distribution describes
the largest observation from a large sample (block maxima,
Coles, 2001). It is thus used for event definitions like the an-
nual maximum temperature or maximum daily precipitation
in a season. The GEV distribution can be formulated as

P (x)= exp

[
−

(
1+ ξ

x−µ

σ

)−1/ξ
]
, (2)

with x the variable of interest, e.g. temperature or precipita-
tion. Here, µ is referred to as the location parameter, σ as the
scale parameter, and ξ as the shape parameter determining
the tail behaviour. Similar to the GPD distribution, unphysi-
cally large shape parameters have to be suppressed, e.g. by a
penalty term that keeps them roughly in the range |ξ | ≤ 0.4.

An extension is to use an agreed number of the r largest
values per year (Coles, 2001). This gives more data points
and hence smaller uncertainties due to natural variability but
requires declustering and implies estimating the behaviour of
the extreme from more moderate extreme events.
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4.2.4 Gumbel

In cases where the shape parameter ξ of a GEV distribution
becomes zero, the distribution is referred to as a Gumbel dis-
tribution. This can sometimes also be achieved by transform-
ing the variable of interest. For instance, in many regions,
daily precipitation can be transformed to a Gumbel distribu-
tion by raising the precipitation to the power 3/2 (van den
Brink and Können, 2011). As for the Gaussian distribution,
the Gumbel distribution results in a smaller uncertainty range
and can be used when a Gumbel model fits the data suffi-
ciently well and there are physical arguments as to why the
shape parameter should be zero.

4.2.5 Gamma

The gamma distribution is often used to describe the distribu-
tion of precipitation. For daily precipitation it is augmented
with a fraction without measurable precipitation (P < 1 mm
usually). It has been used with a covariate in for instance
Gudmundsson and Seneviratne (2016).

G(x)=
1

σ0(ξ )
(x/σ )ξ−1 exp(−x/σ ), (3)

with σ the scale parameter and ξ the shape parameter. For
daily data or data sampled of the order of a few hours to a
few weeks, a fraction of wet days n is included:

G(x)= (1− n)δ(x)+
n

σ0(ξ )
(x/σ )ξ−1 exp(−x/σ ), (4)

with δ(x) the Dirac delta function, a peak with width zero
and integral one.

4.3 Trend definition

To calculate a trend in transient data, some parameters in
these statistical models are made a function of an indicator
of global warming (or another covariate; the same methods
can be used to investigate the dependence on e.g. El Niño–
Southern Oscillation, ENSO). For global warming a common
choice is the 4-year smoothed global mean surface tempera-
ture (GMST) anomaly, T ′, the “pattern scaling” technique
(Tebaldi and Arblaster, 2014). The smoothing is introduced
to remove the fluctuations in the global mean temperature
due to ENSO, which would contaminate the global warming
fingerprint with ENSO teleconnections. Taking other mea-
sures, such as the atmospheric CO2 concentration or radia-
tive forcing estimates, gives almost the same results as these
are highly correlated: for annual means, the Pearson corre-
lation coefficient between CO2 concentration and smoothed
GMST is r(T ′,CO2)= 0.93. However, a linear trend in time
misses the non-linear increase in radiative forcing and the re-
sulting warming trend and hence in principle does not fit the
data as well. Linear trends in time also depend more strongly
on the starting date. The same holds for non-parametric trend

tests such as the Mann–Kendall test, which does not take into
account the time evolution of the climate change signal.

The covariate-dependent function can be inverted and the
distribution evaluated for a given year, e.g. a year in the past
(with T ′ = T ′0) or the current year (T ′ = T ′1). This gives the
probabilities for an event at least as extreme as the observed
one in these 2 years, p0 and p1, or expressed as return periods
τ0 = 1/p0 and τ1 = 1/p1. We estimate confidence intervals
using a non-parametric bootstrap procedure. If the one- or
two-sided confidence interval on the PR excludes one (no
change), the distribution is significantly different between the
two climates.

4.3.1 Shift fit

In the case of a temperature event, it is commonly assumed
that the trend shifts with GMST. This assumption has been
found to hold well in some studies using large ensembles of
model simulations with enough data to analyse them with-
out relying on statistical fits (Sippel et al., 2016; Kew et al.,
2019). For observational studies this assumption implies fit-
ting the temperature data to a distribution that shifts pro-
portionally to the smoothed global mean temperature: µ=
µ0+αT

′ and σ = σ0, with α the trend that is fitted together
with µ0 and σ0. The shape parameter ξ is assumed con-
stant. The change in magnitude of the extreme events is inde-
pendent of the magnitude of the event (by assumption) and
equal to 1I = α(T ′1− T

′

0). The change in probability (PR)
does change with the magnitude, for heat events often vary
strongly. If the one- or two-sided 95 % confidence interval
excludes zero, the change is statistically significant.

Otto et al. (2018b) for instance analysed the cold wave in
June–August 2013 in Peru assuming that the trend in min-
imum temperatures shifts with smoothed GMST. They did
this by investigating the CRU TS4.00 minimum temperature
time series. Whilst both Gaussian and GPD distributions fit
the data well, minimum temperatures over June–August were
fit with a normal distribution that shifts with the global mean
surface temperature. The return period of the 2013 cold event
was calculated to be 17 years (95 % CI 7 to 75 years); see
Fig. 4. In the past, such cold events happened more often:
the probability ratio is 0.08 (95 % CI 0.02 to 0.21); i.e. these
events occurred 4 to 50 times more often before the bulk of
anthropogenic global warming took place. As neither event
was very unlikely, the use of the normal distribution is justi-
fied.

An example of a high temperature extreme is the high tem-
perature in De Bilt in 2018 shown in Fig. 5 (van Oldenborgh,
2018). The record for the highest daily mean temperature
was broken by 1.6 ◦C. A fit of the homogenized observations
since 1901 gives a trend of 2 to 4 times the global mean tem-
perature and a return period in the current climate of very
roughly 300 years (95 % CI of more than 30 years). The ob-
served value is far above the upper limit of the GEV for the
year 1900, so formally the event was impossible in the cli-
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Figure 4. Fit of the minimum temperatures averaged over June–August and Peru. A normal distribution is used that shifts with the global
mean surface temperature. The distribution is evaluated for the climates of 1880 and 2013. (a) June–August minimum temperatures against
the change in GMST. The thick line denotes the time-varying mean and the thin lines are 1σ and 2σ below, respectively. The purple square
shows the 2013 value, which was not used in the fit, and the two vertical red lines show the 95 % confidence interval of µ for the climates of
1880 and 2013. (b) Return periods for the 2013 climate (red lines) and the 1880 climate (blue lines with 95 % CI). Observations are shown
twice, once shifted up to the climate of 2013 with the fitted trend (red signs), once shifted down to 1880 (blue signs). After Otto et al. (2018b),
reproduced on the Climate Explorer at https://climexp.knmi.nl (last access: 2 December 2019).

mate of 1900 and the PR is infinite. However, this depends
on a number of assumptions, so we prefer to say that the
event was extremely unlikely around 1900.

4.3.2 Scale fit

For precipitation time series or variables related to (lack of)
precipitation or wind it is assumed that the distribution scales
with GMST. To allow for a trend in probability the thresh-
old or position and scale parameters are dependent on the
smoothed global mean temperature T ′ with a trend α such
that their ratio is constant. Assuming that the ratio σ/µ, also
called the dispersion parameter, is constant reduces the num-
ber of fit parameters. This is a standard method in hydro-
dynamics, where it is part of the index flood assumption
(e.g. Hanel et al., 2009). This assumption has been tested
and justified in some studies using large ensembles of model
simulations giving large-sample statistics that do not need
assumptions about the fit (e.g. Otto et al., 2018a; Philip
et al., 2018b). The scaling is taken to be an exponential
function of the smoothed global mean temperature, similar
to the dependence of the maximum moisture content in the
Clausius–Clapeyron relations. This exponential dependence
can clearly be seen in the scaling with daily temperature in
regions with enough moisture availability (Allen and Ingram,
2002; Lenderink and van Meijgaard, 2008). The whole dis-
tribution is thus scaled with

µ= µ0 exp(αT ′/µ0), σ = σ0 exp(αT ′/µ0),

with fit parameters µ0,σ0,α and ξ . The shape parameter
ξ is assumed constant. Similar to the fits with a shift with
GMST, the precipitation distribution can be evaluated for

different covariates T ′0 and T ′1 giving rise to a probabil-
ity ratio PR. The relative change in magnitude is now as-
sumed to be independent of magnitude, so it is expressed as
a percentage change between the two climates, 1001I/I =
100[exp(α(T ′1− T

′

0)/µ0)− 1].
Van der Wiel et al. (2017) studied the August 2016 flood-

inducing extreme precipitation in southern Louisiana by
looking at 3-day averaged precipitation values. For this they
used the 19 stations with at least 80 years of data and at least
0.5◦ of spatial separation between stations on the central US
Gulf Coast. Using a GEV that scales with GMST, they found
a return period of about 500 years (95 % CI 360 to 1400) and
an increase in probability of a factor of 2.8 (95 % CI 1.7 to
3.8), corresponding to an increase in intensity of 17 % (95 %
CI 10 to 21 %) (see Fig. 6). The stations are not all inde-
pendent, so the bootstrap includes blocks of all stations with
cross-correlations r > 1/e, on average 2.3 stations, leaving
about eight degrees of freedom.

4.3.3 Shift and scale fit

The other part of the index flood assumption, that the PDF
scales, i.e. σ/µ is constant, can also be relaxed so that two
trend parameters need to be estimated from the data. This has
been attempted by Risser and Wehner (2017) but of course
results in larger quantified uncertainties.

4.4 Influence of modes of natural variability

It is well known that ENSO has a major influence on tem-
perature and precipitation variability in large parts of the
world. The influence is not significant everywhere or in every
season: there are for instance very weak ENSO teleconnec-
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Figure 5. Fit of a GEV of the highest daily mean temperature of the year at De Bilt, the Netherlands, for 1901–2017, shifting with the
smoothed GMST, with the value for 2018 (29.7 ◦C) in purple. (a) As a function of GMST, the thick lines denote µ, the thin lines the 6- and
40-year return periods. (b) As a function of return period in the climate of 1900 (blue) and 2018 (red). After van Oldenborgh (2018).

Figure 6. Similar to Fig. 5 but for the extreme precipitation event
in southern Louisiana in August 2016, using a GEV distribution
that scales with GMST and evaluated for the years 1900 and 2016.
Reproduced from van der Wiel et al. (2017) under the licence agree-
ment at https://creativecommons.org/licenses/by/4.0/ (last access:
31 October 2018); see original paper for more details.

tions in Europe. The link between the magnitude of ENSO,
expressed as the monthly relative NINO3.4 index, and the
mean temperature or precipitation data in the study area can
be analysed to quantify the influence of ENSO by calculat-
ing a (lagged) correlation. For instance, Philip et al. (2018c)
calculated the difference in return period between the actual
drought in 2015 in Ethiopia, with El Niño conditions, and the
same drought if it had occurred under ENSO-neutral condi-
tions (detrended NINO3.4 values close to zero). The influ-
ence of ENSO, given by the regression slope of the NINO3.4
index on the log precipitation series, was subtracted from
2015 only and the changes to the event’s magnitude and
return period under ENSO-neutral conditions were investi-
gated, with the rest of the time series unchanged. The ac-
tual return period was once every few hundred years (lowest
estimate of 60 years, according to the 95 % CI), but under
ENSO-neutral conditions the fictitious event would have had
a return period of 80 years (lowest estimate of 20 years, ac-
cording to the 95 % CI). This means that the drought would
have been less severe but still exceptional without the influ-
ence of El Niño.

Decadal variability can often mask the presence of a back-
ground trend due to global warming, particularly when an ob-
servational series is too short, which would render an event
unsuitable for further analysis. Fortunately, in some cases,
decadal variability in the observed time series can be char-
acterized by a known index of a mode of variability. If the
correlation between the time series and the index is large and
there is a known physical reason for it to be, the index is con-
sidered to describe the decadal variability well, and it can be
used to remove the decadal signal from the time series. If, af-
ter removal of the decadal signal, there is no longer any auto-
correlation, only high-frequency variability remains and the
observational series can be used for trend detection. For ex-
ample, van Oldenborgh et al. (2016a) found that the decadal
variability in winter temperatures over the North Pole re-
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gion was highly correlated with the Atlantic Multidecadal
Oscillation (AMO) index of van Oldenborgh et al. (2009),
which is independent of the warming trend and emphasizes
the northern part. Using the regression of the observed series
on the AMO to linearly subtract the influence of the decadal
variability from polar temperatures left only high-frequency
variability, and the resulting time series of temperatures re-
duced to AMO-neutral showed a significant linear trend with
respect to GMST. As the event year was AMO-neutral, the
AMO did not change the magnitude of the event in 2016.

Murakami et al. (2015) found that the favourable condi-
tion of El Niño and decadal variability interplayed with an-
thropogenic forcing such that the observed trend in tropical
cyclones over Hawaii was not statistically significant, while
anthropogenic forcing contributed to the active tropical cy-
clone season in 2014.

5 Step 4: Model evaluation

From step three, a return period and an observed trend are
obtained, as change in probability (PR) and intensity (1I ).
The next step is to attribute these trends to anthropogenic cli-
mate change (or other factors, as specified in Sect. 3). This
can only be done with physical climate models that solve
the physics of the climate system numerically dependent on
the external forcing prescribed. These usually also have the
advantage of a larger number of data points, as they can
simulate the climate many times over. This leads to smaller
confidence intervals due to natural variability. However, this
comes at the expense of systematic deviations from reality
due to model biases. Before they are used one must ascertain
that the models are fit for purpose, i.e. that they can represent
the particular extreme under study well enough.

It is important to start the model evaluation with as large
a set of different climate models as possible. The first reason
for this is pragmatic: climate models have in general not been
designed to represent extreme events well, and in practice
many models have been found not to be fit for this purpose.
Starting with a large set of models increases the probability
that there are a few that pass the tests described in this sec-
tion.

This second reason is that single models usually do not
give a reliable description of the probability distribution of
trends in the climate system: they underestimate the uncer-
tainty (Annan and Hargreaves, 2010; Yokohata et al., 2012;
van Oldenborgh et al., 2013), even for perturbed parameter
ensembles. The same holds for seasonal forecasts (Hagedorn
et al., 2005). Different models all have their specific advan-
tages and disadvantages due to the specific model set-up, e.g.
a coupled model, an atmosphere-only model, a very large
ensemble or a set of coupled global climate models, tran-
sient model runs, or fixed forcing runs. However, there is
also a trade-off between the wish to have the results relatively
quickly and the availability of model runs. In a rapid extreme

event attribution study, the quick availability of model runs
also plays a role in the consideration of models that are ap-
propriate to use for the analysis. The use of different models
allows a determination of a model spread as an indication
of model uncertainties and can give, if the model analyses
agree, greater confidence in the results.

The validation consists of three steps:

1. general properties,

2. statistical description of extremes, and

3. physical causes of extremes.

The first step starts with the obvious question of whether the
model’s resolution and other properties allow it to represent
the extreme under study. A model with a resolution of 200 km
simply cannot represent a tropical cyclone with features of
25 km or convective events of a few kilometres. To represent
a tropical cyclone somewhat realistically, one needs 25 km
resolution (Murakami et al., 2015); for short-duration precip-
itation extremes one typically needs to use a non-hydrostatic
model with about 1 km resolution (Kendon et al., 2014). Sim-
ilar checks should be done for orography when relevant. It is
also good practice to compare the seasonal cycle and the spa-
tial pattern of the variable to observations, especially if there
are geographical features like mountains or coastlines.

For the statistical comparison of extremes we check
whether the fit parameters of the distribution agree within
uncertainties with those of the observations determined in the
previous step. We allow for an overall bias correction, addi-
tive for temperature and multiplicative for precipitation and
wind.

In the assessments, if the confidence interval of the re-
maining fit parameters σ (temperature) or σ/µ (precipitation,
wind) and of ξ (if appropriate) overlap with the intervals of
the parameters fitted to observations, the model is consid-
ered to be good enough. The trend parameter α can also be
compared to the observed value, but this can only be used as
a check if the source of the discrepancy is known and pre-
vents a realistic simulation. An example is the trend in the
warmest afternoon of the year over India in CMIP5 mod-
els, which show a strong warming trend. The observations
show no trend due to increasing aerosol concentrations and
increasing irrigation (van Oldenborgh et al., 2018). The irri-
gation is not included in CMIP5 models and the aerosol influ-
ence is likely underestimated, so in that case it was decided
that these models are not good enough for studying trends in
heat waves in India. Note that in all cases the uncertainty due
to natural variability can hide systematic deficiencies of the
model.

The interplay between biases and natural variability was il-
lustrated by Kew et al. (2019), who studied the European heat
wave of summer 2017 in 3-day averaged maximum tempera-
tures. In that particular study, model validation revealed that
the models that were available overestimated the variability
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of high extremes of temperature averaged over a large area in
the Balkans. Therefore a formal attribution to anthropogenic
climate change was not possible for this area. Some mod-
els could however be used to study station locations, partly
because the uncertainty in the fit parameters is larger for in-
dividual stations than for an area average, so that the test is
less powerful for individual stations.

The third step is evaluation of the physical characteristics
of the extremes: does the model generate these extremes for
the right reasons? This is still a subject for research (Vau-
tard et al., 2018) and we only have a few partial answers on
how to investigate this at this moment. Useful checks have
been whether the ENSO teleconnections to the extreme are
realistic (King et al., 2016) and whether the modelled mete-
orological conditions that cause extreme precipitation on the
US Gulf Coast look realistic and include one-third of non-
hurricane events (van der Wiel et al., 2017). Tracing back the
source of water of an extreme precipitation event turned out
to be less useful as the sources can differ widely between
different events in the same area (Eden et al., 2018). Apart
from the evaluation of the physical cause of extremes, the re-
sponse of extremes to external forcing should be evaluated.
We expand on this in Sect. 7 on hazard synthesis.

A by-product of the statistical check is that it provides in-
formation on any model biases. A bias correction usually
needs to be applied before the model can be compared to
the observations. The most straightforward way is to apply
a bias correction to the full distribution. An additive bias
correction would be given by the differences in µ between
the model and observations and a multiplicative one on µ/σ .
This method (or, alternatively, adjusting the extreme value)
was used in earlier analyses whenµ of the model was outside
observational uncertainty bounds and no anomaly series was
used. However, this method often gives rise to return values
in the model that are very different from the observed ones. A
simpler method is to just evaluate the model for the same re-
turn period as we found in the observations. This implies that
we keep p0 fixed and give up the possibility of estimating the
return period from models.

In some cases an ensemble consists of different models
pooled together, e.g. the EURO-CORDEX regional climate
simulations. In that case all models have to be bias-corrected
individually. Alternatively, a version that has already been
bias-corrected can be used (see e.g. Kew et al., 2019; Vau-
tard et al., 2019; Luu et al., 2018), However, these bias cor-
rections were not designed specifically for the extremes and
a specific assessment is still necessary in this case. Luu et al.
(2018) proposed a testing procedure for this. In such studies
pre-bias-corrected sets were compared with simple scaling
corrections, and results were found to be similar.

Philip et al. (2019) analysed the August 2017 floods in
Bangladesh from meteorological and hydrological perspec-
tives. In the meteorological analysis they fitted the 10-day
averaged precipitation over the Brahmaputra basin to a GEV
that scales with GMST. The event amplitude was found to be

14.2 mmd−1 using the CPC dataset, and the associated return
period was found to be 11 years (though with a large uncer-
tainty). In one of the models they used (EC-Earth), which
passed the validation tests for the GEV fit for the same pe-
riod as used for CPC and with scaling to GMST, the return
period of 11 years corresponds to 16.9 mmd−1 averaged over
10 days. For the calculation of the probability ratio in that
model a threshold value of 16.9 mmd−1 was therefore used.

Recently a few issues on reliability and calibration have
been raised in the literature. In the next few paragraphs we
describe implications specifically for the attribution studies
and methods addressed in the present paper.

There have been arguments that we should also assess and
correct the reliability of the ensembles (Bellprat and Doblas-
Reyes, 2016; Bellprat et al., 2019), although others found
that the reliability of attribution statements is only weakly
connected to the reliability of the ensemble (the term used in
forecast verification) (Lott and Stott, 2016; Ciavarella et al.,
2018). This depends crucially on the framing of the attri-
bution question. For the simple framing we use here, with
only the trend describing deviations from the climatology of
the ensemble, the requirement that the fit parameters (trend,
scale, and shape parameter) of the model ensemble agree
with the fit parameters of the observations already ensures
that the reliability is good, as the natural variability is to-
tally uncorrelated between the observations and models. In
case the rapid attribution would be carried out with actual or
forecast SSTs (which is currently not the case), correlating
the study variable with SSTs on a global map should reveal
whether there is a teleconnection in the observations, assum-
ing this type of teleconnection is most important for our rapid
attribution studies. In a global map these teleconnections ap-
pear as correlations of SST with the variable in the area under
study. However, if there is no teleconnection in the observa-
tions but a spurious one in a model, as in the example of
Bellprat et al. (2019), a reliability test may be useful.

Bellprat et al. (2019) also propose a calibration procedure
to correct an unreliable ensemble by adjusting the trend and
variability to the observed values. The calibration constants
are however of the same order of magnitude as the uncertain-
ties in the trend and variability of the observations, which is
usually much larger than for models. Currently, their tech-
nique does not propagate the uncertainties in these calibra-
tion constants. Not including these uncertainties would give
rise to a severe underestimation of the uncertainty of the attri-
bution statement, so they would need to be taken into account
if this calibration procedure would be used.

More fundamentally, this procedure would result in repro-
ducing the trend from gridded observations. As we use the
models to investigate whether we can attribute the observed
trend to climate change or not, it is important that the factors
influencing the model trend are independent of observations.
Effectively setting the model trend equal to the observed one
would negate that use of the climate models. If there is a
discrepancy between observed and modelled trends, this can
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point to the existence of additional trend-influencing factors
in the real world that are not adequately represented in the
climate models. This gives rise to a very different attribution
statement than one would obtain after setting the modelled
trend equal to the observed one. If models fail to pass the
validation criteria we use, rather than applying a calibration
procedure to align the output to observations, we recommend
that the (physical) processes in those models leading to dif-
ferences with observations are first investigated.

The result of this fourth step, the model evaluation, is a list
of models that can be used for further analysis of the extreme
event, including information on the validation and threshold
values. In the case that fewer than two models pass the val-
idation test, we do not accept it as a robust attribution state-
ment anymore, as a single model is usually overconfident.

6 Step 5: Multi-method multi-model attribution

The fifth step in the attribution study comprises the actual at-
tribution analysis. After defining the threshold value the trend
and probability ratio can be calculated from the model distri-
butions. In previous studies two types of model ensembles
have been used that require different approaches. These are
“fixed forcing” runs and “transient forcing” runs.

6.1 Fixed forcing runs

The original proposal for event attribution (Allen, 2003) was
for two model experiments, one for current conditions and
one for a counterfactual world without anthropogenic emis-
sions and hence pre-industrial concentrations of CO2 and
other greenhouse gases as well as aerosols. Note that cur-
rent conditions are conditions we experience in the current
transient climate and not in a possible future equilibrium
state. SST-forced models obviously need adjusted SSTs and
sea ice, usually from coupled experiments. It is preferable to
sample the uncertainty in the amplitude and pattern by using
a set of different pre-industrial SST fields (Schaller et al.,
2016). Some models also adjust the land surface between
these climates, others keep it the same.

The calculation of the probability ratio requires separate
calculations for the probability from the counterfactual forc-
ing experiments and the current forcing experiments. This
is determined either by non-parametric methods (counting)
or fits to extreme value functions (better precision but more
assumptions; see Sect. 4.2 for statistical models used). The
threshold value is again obtained by means of setting the re-
turn period in the current conditions’ run equal to the value
from observational data. The probability ratio is simply the
ratio of the two probabilities (or return periods). A confi-
dence interval is easily estimated from the CIs of the two
probabilities, as these are independent. The same procedure
can be used for the estimation of change in intensity of the
event, 1I .

Figure 7. Probability plot for the maximum of winter (DJF) daily
precipitation averaged over the northern UK, 54–57◦ N, 6◦W–2◦ E.
Red indicates the probability of daily mean precipitation under ob-
served climate conditions, blue the counterfactual simulations with-
out anthropogenic climate change. See Otto et al. (2018a) for more
details.

Otto et al. (2018a) studied the flooding event in north-
ern England and Scotland of December 2015 that was
caused by heavy precipitation during storm Desmond. The
weather@home ensemble was used to simulate the current
climate (“actual” ensemble) and a counterfactual climate
without anthropogenic climate change but the same SST
anomalies (“counterfactual” ensemble). For this very large
ensemble no assumption was needed about the distribution.
The return period of a 1-in-5-year event in the current climate
would have been an approximately a 1-in-10 (95 % CI 6 to
18) year event in the counterfactual “world that might have
been” without anthropogenic climate change. This gives an
increase in the likelihood of such an event occurring of a fac-
tor of 1.3 to 3.5 (see Fig. 7).

If the model is run under a future scenario forcing, the
same method can be used to analyse the future scenario, for
instance for a 2 ◦C warmer world. With this, a statement on
the future probability of the event under consideration can be
made for this model.

6.2 Transient forcing runs

An alternative is to use transient forcing experiments and
analyse them in the same way as the observational data, ex-
cept that multiple ensemble members may be available. If the
attribution is done conditional on some mode of variability,
e.g. ENSO, members in the prescribed phase can be selected
(King et al., 2013b). The selected ensemble members are in-
cluded in the same fit, and years from the past until current
conditions are used in this analysis. (Current conditions can
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be the current year but also the model year in which mod-
elled global mean temperature has risen the same amount as
the observed one.) It is preferable not to include data up to the
end of the integrations, often 2100. This would increase the
signal-to-noise ratio, but local forcings often have very dif-
ferent influences in the future than in the past. For instance,
aerosol effects tend to increase up to now and may decrease
in the future depending on the scenario definition.

Using the threshold value for which the return period in
the model is similar to that of the observed extreme event,
the trend and probability ratio can be calculated for the years
Y0 and Y1. Note that this method relies on all the assump-
tions that were used for the observations, despite the fact that
there may be enough data available from the model to do the
analysis without these.

An alternative method is to take relatively short time inter-
vals, e.g. 30 years, from a large transient climate model en-
semble and analyse these as if they represent a fixed climate
at the centre of the interval. This was for example done in the
EURO-CORDEX ensembles in (Kew et al., 2019; Luu et al.,
2018; Vautard et al., 2019). This avoids making assumptions
about the way climate change affects the PDF (only shift-
ing or scaling), though it is at the expense of less statistical
power.

In some cases a proper pre-industrial period is not avail-
able (this is the case in regional climate simulations such as
CORDEX) and a partial attribution only can be made as sim-
ulations start in 1951 or 1971. This can be compensated by
further scaling assumptions in the results (see Sect. 7).

As an example, Uhe et al. (2018) studied the drought in the
south-east of Kenya in the year 2016. One of the models they
used is the EC-Earth model, which has 16 ensemble members
simulating the climate from 1860 to 2100 using the CMIP5
historical/RCP8.5 forcings. All members are pooled together
and the same statistical method is used as for observations in
this study: fitting the data to a GPD which scales to the model
mean GMST, using data up to 2016. In this example the EC-
Earth model shows a PR between 2016 and 1920 of 1.4 (95 %
CI 1.1 to 2.1), which means a significant trend towards higher
probability of low precipitation in this model (see Fig. 8).

If the model run extends into the future, the same method
can be used to analyse the future scenario, for instance for a
2 ◦C warmer world or the year 2050. With this a statement
on the future can be made for this model. The standard ap-
proach is to compare the future to the current climate, for
example, “According to model simulations used here, in a
transient 2 ◦C warmer world relative to pre-industrial, events
similar to the extreme observed this year will be common-
place, occurring nearly every year”.

Finally, some model runs have been designed for com-
parisons between the current and a counterfactual climate
but include transient runs to establish climatologies (e.g.
weather@home, UK Met Office HadGEM3-A attribution
runs). This enables both methods to be used for the same

model, giving two estimates for the PR and 1I that have in-
dependent confidence intervals due to internal variability.

7 Step 6: Hazard synthesis

The previous steps give different types of results for the same
class of events: probability ratios and changes in intensity, for
both observational data and model data (possibly based on
different experimental framings). We now have to synthesize
these partial results into a single attribution statement. This
is an area of active research, and the methods discussed here
are just the state of the art at this moment but will likely be
improved upon in the near future. Current experiments using
a new synthesis method with better theoretical justification
give results comparable to those in Fig. 9.

First the fits to observations and transient runs have to be
converted to a common baseline. For this we often take 1900,
as it is often a good balance between the availability of obser-
vations and model runs and convenience in communicating
results. However, this year annual observed GMST was about
0.1 ◦C above the trend line for a 298.8 ppm CO2 concentra-
tion and hence even more above true pre-industrial temper-
atures (Hawkins et al., 2017). If this year is not taken as a
reference year in the fits, we can extrapolate back to 1900
using the same assumptions that were made in the fit, i.e.
that the PDF shifts or scales with smoothed GMST (or an-
other indicator of anthropogenic global warming). This also
has to be done if we have (approximate) time slice experi-
ments that start at a later date, e.g. RCM experiments start-
ing in 1950. Next we assume that the effects of natural forc-
ings were small over the last century, so that we can compare
the 1900 results with the counterfactual world results. This
is supported for global mean temperature by Bindoff et al.
(2013) but is sometimes not true locally. Other local forcings
such as aerosols, irrigation, and urban heat can also distort
results.

Next the results are compared graphically, including 95 %
uncertainties; see for instance Fig. 9. The differences be-
tween the values of the PRs and 1I are due to natural vari-
ability, framings and model uncertainty. As the plotted un-
certainties are only due to natural variability plus the model
spread in multi-model ensembles, their importance relative
to the other factors can be estimated. One way to do this is
by computing a statistic that compares the spread in central
values with their uncertainties: χ2/dof, with the number of
degrees of freedom, dof, 1 less than the number of fits. If
this is roughly equal to 1, intra-ensemble variability (natural
variability and the model spread of multi-model ensembles)
dominates over framing and other model uncertainties. If it is
much larger than one, the systematic differences among the
model ensembles and between the ensembles and observa-
tions contribute significantly.

If the intra-ensemble variability dominates, which is often
the case for precipitation, the final result can be obtained as
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Figure 8. Similar to Fig. 4 but for the low precipitation event in the south-east of Kenya in 2016, using a GPD that scales with GMST and
evaluated for the years 1920 and 2016. The figures show data of the 16 ensemble members of the EC-Earth model and the fit uses the lowest
20 % of the data. See Uhe et al. (2018) for more details.

a simple weighted average for PR and 1I . This optimally
reduces the noise. At the moment we assume that log(PR) is
normally distributed and all results are independent as they
have independent realizations of the natural variability. A re-
finement that may make sense is to treat lower and upper un-
certainties separately if the uncertainty range from the boot-
straps is asymmetrical, but more research is needed on this.
An example is given in Fig. 9a. If we assumed the PDF shifts
with the covariate, as for temperature, we also assume that
1I is normally distributed. For a PDF that scales with the
covariate, as for precipitation and wind, we take the expo-
nential of the weighted average of log(1I ).

If there is a significant contribution of χ2 due to the spread
of the different ensembles compared to their uncertainty es-
timates, the framing and model uncertainty do make a dif-
ference. If the framing affects the answer strongly the SST-
forced experiments and coupled experiments should fall into
two incompatible groups. In this case one should refine the
attribution question (or split it into two questions) to either
make it conditional on the relevant state of the ocean and
only select coupled runs that agree with that or keep it gen-
eral and add SST-forced experiments from other years. If this
grouping is not apparent the spread is mainly due to model
differences. This uncertainty has to be propagated to the final
result and the final uncertainty is larger than the spread due
to natural variability would indicate. One way to do this is to
inflate the uncertainty by

√
χ2/dof. This method was used in

Eden et al. (2016), van Oldenborgh et al. (2017), Philip et al.
(2018c); see Fig. 9b for an example. We are currently tri-
alling a mathematically better-defined method, which gives
similar results.

Finally, if the observed and model trends are incompati-
ble there is no way to synthesize the results (Fig. 9c and the
only conclusion that can be drawn is that an attribution (or
indeed projection) statement is not possible until all factors

that caused the trend have been included realistically in the
models.

Additionally, the comparison between modelled trends
and observed trends serves as an extra model validation. If
the response of extremes to external forcing is similar in ob-
servations and models, the confidence in the attribution re-
sults is higher. In case the response of extremes to external
forcing is different in models and observations, no statement
or an attribution statement only on part of the trend can be
given. If this is the case, there is either the possibility of other
forcings with trends that are not included in the models af-
fecting the extremes (e.g. irrigation) or the models do not cor-
rectly represent the mechanisms leading to the extremes. In
both cases the difference between models and observations
can be useful input to model developers.

If the averaged (inflated) results for the PR and 1I can
be computed they are added to the bar plot with the obser-
vational and model results. This gives a strong visual check
whether the synthesis makes sense.

If a statement on the future is given in the previous step
for more than one model, a more general statement can be
given here on the future as well. As the attribution analy-
sis is often done as a function of the GMST, this can be ex-
tended easily to common transient warming scenarios that
are formulated in the same terms: 1.5, 2 and 3 ◦C above pre-
industrial. Because often fewer values will be available for a
synthesis on future probability ratios than for the synthesis of
past probability ratios – not all models have future scenario
runs or natural runs that continue into the future, and there
is no probability ratio for the observed series – the values to
be synthesized will be different from those for the past. To
avoid erroneous direct comparisons with the synthesis result
from observations and models on trends in the past, we rec-
ommend not to use the same synthesis method, rather make
a more general statement. The temperature scenarios allow
for statements like “As the planet continues to warm, at 2 ◦C
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Figure 9. Synthesis plots of (a) the PR of extreme 3-day aver-
aged precipitation in April–June averaged over the Seine basin
(Philip et al., 2018b), (b) the PR of low precipitation in February–
September in Ethiopia (8–13◦ N, 38–43◦ E) with inflated average
(Philip et al., 2018c), and (c) the PR for changes in wind intensity
over the region of storm Friederike on 18 January 2018 (after Vau-
tard et al., 2019). Observations are shown in blue, models in red,
and the average in purple.

above pre-industrial this extreme would be expected to occur
about X (Y to Z) more/less often than now.”

Note that probability ratios depend on the threshold used
to define the event. Some extreme events, notably heat waves
and to a lesser extent cold waves and droughts, follow an ex-
treme value distribution with an upper limit (negative shape
parameter) known as a reversed Weibull distribution. If the
extremity of the event is such that it is found near this end-
point, small changes in the threshold result in large changes
in return periods and probability ratios. The lower bound is
then more stable and it may be preferable to emphasize it
in communications. If, on the other hand, the distribution is
modelled with a positive or near-zero shape parameter, which
is usually the case for high precipitation events and low tem-
perature events, then the probability ratio is less sensitive to
small changes to the event threshold. This is useful to know

if the threshold is uncertain due to lack of data of the event
itself at the time of analysis.

8 Step 7: Vulnerability and exposure analysis

The synthesis above only concerns the probability of an ex-
treme meteorological event. In risk terminology this is de-
noted by the term “hazard”. The overall risk is the product
of hazard with two other terms: “exposure” and “vulnerabil-
ity”. Exposure refers to the presence of people, livelihoods,
infrastructure, and economic or social assets in places that
could be adversely affected by extreme events. Vulnerability
is the propensity or predisposition to be affected (Field et al.,
2012). Vulnerability and exposure are key determinants of
impacts when a risk is realized, underscoring the importance
of including this information when communicating chang-
ing risks. There have been studies in which the total risk has
been attributed to climate change Mitchell et al. (e.g. 2016);
Schaller et al. (e.g. 2016), but these excluded trends in vul-
nerability and exposure. We find it advantageous to explicitly
acknowledge these trends and do a quantitative attribution of
the hazard (Sect. 7) plus a separate discussion of trends in
vulnerability and exposure that is often qualitative.

When an attribution analysis is done because of the im-
pacts (rather than a meteorological extreme with little im-
pacts), an initial baseline of general, country-level vulnera-
bility and exposure to different climate events is established
through a review of existing metrics. Vulnerability and expo-
sure are by definition characteristics that are specific to the
location where the extreme event occurs and are characteris-
tics that evolve over time, thus, the vulnerability and expo-
sure analysis should be done in real time.

First, official disaster information from humanitarian, gov-
ernment networks, and media sources are reviewed to under-
stand the impacts associated with the extreme event. Specifi-
cally who or what was impacted as well as when, where and
how. This phase also informs the event definition (Sect. 3).
With basic impact characteristics identified, we explore the
wider context of why those specific impacts may have oc-
curred.

Vulnerability and exposure data are often not uniform
across countries, not updated, unavailable at resolutions other
than country-level, or simply not collected. This makes it
nearly impossible to have a standardized methodology for
quantitatively assessing vulnerability and exposure in ex-
treme events across many geographies. However, a few
country-level standardized metrics do exist, for example the
Inform Index, which provides a global, open source risk as-
sessment and is now available at the sub-national level in
eastern Africa.

A desk-based review is done of existing peer-reviewed lit-
erature, white papers and official reports from humanitarian
institutions that provide insights into the drivers and charac-
teristics of vulnerability and exposure related to the extreme
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event in the region. Characteristics can include a review of
social, economic, geographic, demographic, cultural, insti-
tutional, governance and environmental factors. In a second
stage, the trends in these factors are described, often only
qualitatively. In-country stakeholders with knowledge or ex-
pertise in the specific vulnerability and exposure highlighted
in the desk-based review are contacted to further inform the
analysis. The inclusion of in-country partners both enhances
our understanding and adds credibility to our communica-
tion. It is important to note that detailing the exposure and
vulnerability context when an extreme event occurs is dis-
tinctly different from attempting to attribute the disaster im-
pacts of an extreme event.

An example where the trends in vulnerability and expo-
sure were found to be more important than the trends in the
meteorological hazard is the attribution study of the drought
in São Paulo (Otto et al., 2015). No trend was found in the
hazard of low precipitation over the area feeding the city wa-
ter system, but the large increase in the number of people
using it and the increase in water consumption per person
due to rising living standards had overtaken the capacity of
the system leading to water shortages.

9 Step 8: Communication

The eighth and final step in the extreme event attribution
analysis is the communication of the attribution statement.
All communication operations require communication pro-
fessionals. In this article we only describe the chain of com-
munication of the analysis and synthesized results, omitting
other types of communication that are not directly related to
the analysis. Communication here concerns writing a scien-
tific report, a more popular summary, targeted communica-
tion to policy makers, and a press release. We found that the
first one is always essential; which of the other three are pro-
duced depends on the target audiences. The scientific report
is key for traceability of numbers, data, and methods that will
be communicated in other media. For all results it is crucial
that during this chain the information is translated correctly
into the different stages. This sounds obvious, but in practice
it can be hard to achieve.

9.1 Scientific report

The scientific report details the procedure and intermediate
results at a level that is sufficiently detailed such that another
scientist can reproduce all results. This may be turned into
a scientific article for peer review; however, a peer-reviewed
paper is not always useful because the study may not be in-
novative. If the attribution study uses similar tools and data to
earlier published analyses, it may not be worth the effort nor
indeed be acceptable to scientific journals. However, if the
procedures differ from peer-reviewed methods, new datasets
have been used if unknown and different findings have been
obtained, or the results are for an area where e.g. the exis-

tence of climate change is still widely debated in public dis-
course or, on the contrary, climate change is blamed falsely
such that only a peer-reviewed study would carry enough
weight, then this step is required. When pursuing peer re-
view it is recommended to publish in an open-access journal
to ensure maximum accessibility to the findings.

The purpose of the scientific report is 2-fold. Firstly, it is
for transparency, such that people can check assumptions,
event definition, and other decisions during the analysis. Sec-
ondly, when written alongside the analysis, the science report
helps to improve communication within the analysis team
as it provides a reference for all members to construct other
communication forms.

9.2 Scientific summary

Next, a summary of the findings in 1 or 2 pages is written
by those carrying out the analysis with input from commu-
nications partners. This summary is aimed at a scientifically
literate public such as science journalists or scientists who
want an accurate description of the results but have no need
to reproduce the whole analysis. It needs to be concise but
precise, including numbers and uncertainty ranges. It should
cover a description of the event and impacts, the event def-
inition, return period, model evaluation, separate model re-
sults, the synthesized attribution statement, and a summary
of the vulnerability and exposure analysis. It is often useful
to briefly mention how this analysis fits with other studies.

9.3 Policy-relevant summary

Similarly, a 1-page summary in non-scientific language may
be prepared for local disaster managers, policy makers, and
journalists with the impacts, the attribution statement, and
the vulnerability and exposure analysis, preferably with the
outlook to the future if available. The local team members
and other stakeholders in the analysis can be invited to be
points of contact for anyone seeking further clarification of
contextual information, or they may be brought closer into
the project team to collaborate and communicate key attribu-
tion findings.

9.4 Press release

A press release may be written by communications partners.
The press release should contain understandable common
language. Furthermore, we found that after inserting quotes
from the scientists that performed the analysis, people gain
more confidence in the results. This may include accessible
graphics, such as the representation of the change in inten-
sity and probability of very mild months in the high Arctic
as observed in November–December 2016 in Fig. 10 (van
Oldenborgh et al., 2016a).
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Figure 10. Graphic designed by Climate Central for the
November–December 2016 North Pole warmth attribution analy-
sis, with changes in intensity and probability visualized for the past,
present, and future. From van Oldenborgh et al. (2016a).

9.5 Social media

Finally, social media can be used to amplify the spread of
attribution findings and contribute to public discourse on the
extreme event being studied. Social media can also help to
reach younger audiences (Hermida et al., 2012; Shearer and
Grieco, 2019; Ye et al., 2017). Social media monitoring and
analytics can also be used to assess awareness and the spread
of attribution findings (Kam et al., 2019).

9.6 Automation

Some of the outreach products can also be generated auto-
matically on a website that progressively reveals more and
more information, as currently being trialled by the UK Met
Office as part of the European project EUPHEME. At the
moment this is in the prototype stage and so only covers part
of the methodology: only a single model and only the event
definition step (given by the user) and attribution steps. It is

possible that such a design will generate or supplement some
of the hand-made products described above in the future.

9.7 Different outcomes

In attributing an extreme event to anthropogenic climate
change, four different outcomes are possible. The commu-
nication step is simplified if templates are available for all
outcomes.

(i) The event was made more likely due to anthropogenic
climate change.

(ii) The event was made less likely due to anthropogenic
climate change.

(iii) Anthropogenic climate change did not alter the fre-
quency of occurrence of the event.

(iv) With our current understanding and tools we cannot as-
sess whether and how the event was influenced by an-
thropogenic climate change.

Awareness of these outcomes, and their implications, is im-
portant, especially if the outcome aligns with the fourth cat-
egory. Regardless of the results, it is important to maintain
a consistent level of effort to communicate the results, oth-
erwise there is a risk of creating a positive communication
bias, as in much scientific literature. Positive results are more
frequently written up than negative results in peer-reviewed
journals and high-profile journals reject negative results out
of hand.

Examples of these four different types of outcomes are
listed below.

(i) The conclusion of the analysis of the extreme pre-
cipitation in southern Louisiana in August 2017 by
van der Wiel et al. (2017) was that anthropogenic cli-
mate change made such an event more likely; they
found that there is a significant increase in probability
of a factor of 2.8 (95 % CI 1.7 to 3.8).

(ii) The analysis of the cold wave in June–August 2013 in
Peru by Otto et al. (2018b) leads to the conclusion that
such an event has become less likely due to climate
change. In the past, such cold events happened more of-
ten: the probability ratio is 0.08 (95 % CI 0.02 to 0.21).

(iii) In the analysis of Philip et al. (2018c) on the Ethiopian
drought of 2015, taking the model spread into account
they cannot attribute the drought to anthropogenic cli-
mate change, with the 95 % confidence interval rang-
ing from a probability decrease between pre-industrial
and now of a factor 0.3 and an increase of a factor 5.
Increases or decreases larger than this can however be
excluded.
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(iv) The analysis of the area averaged temperature anomaly
of the Mediterranean heat wave in 2017 did not lead
to an answer to the attribution question in Kew et al.
(2019). The conclusion of this analysis was that al-
though they cannot give an attribution statement based
on both observations and model analyses, from observa-
tions it is clear that there is a positive trend in the occur-
rence of hot events like the heat wave in August 2017.
Observations show that since 1950 the risk has at least
quintupled, but is probably much higher.

9.8 Language

There has been some research into the efficacy of different
ways to communicate results and uncertainties to a large au-
dience. For instance, van der Bles et al. (2018) found that
a numerical uncertainty range hardly decreases trust in a
statement, whereas a language qualification does decrease
it significantly. We also found that communicating only a
lower bound, because it is mathematically better defined in
many cases, is not advisable. In the first place a phrase
like “at least” was found to be dropped in the majority of
popular accounts. Secondly, quoting only the lower bound
de-emphasizes the most likely result and therefore commu-
nicates too conservative an estimate (Lewandowsky et al.,
2015).

10 Conclusions

In this paper we have written down the detailed methodol-
ogy of extreme event attribution as developed and used by
WWA and that can be deployed in an operational near-real-
time attribution service. The eight steps of this method have
been set up and polished during rapid and slower attribution
studies. Analyses performed by WWA show that the proto-
col is practical and helps to streamline attribution studies of
extreme events.

As methods develop, this protocol may no longer be com-
plete and the method can be complemented when new in-
sights are gained. It is not meant to exclude other meth-
ods. It is, however, a method that has already been tested
in rapid and slower analyses, and verified by additional val-
idation studies (Otto et al., 2018a; Philip et al., 2018b). It
is thus ready for use in extreme event analyses, including
rapid analyses, and by operational services. More research
is needed in particular steps in our framework, such as in re-
fining the validation of climate models and the synthesis of
results. These topics are currently being addressed within the
European project EUPHEME.

Other methods that are currently being developed and
tested could complement the ones described in this paper in
the future. For communication purposes the storylines ap-
proaches could fit well and theoretically be placed under a
common framework with probabilistic approaches.
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